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2 Reynolds Transport Theorem
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Where a 1s any intensive property corresponding to N. (1e., @ = N per unit mas
and it can be used for different quantities as follows.
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0 Gonservation of Mass

. Physical principle: Mass can be neither created or destroyed.
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« Applying Guess divergence theorem, we convert the surface
integral to volume integral to obtain:
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« Differential form of the mass conservation equation
(or continuity equation):
Simplifications:
Form incompressible flows:
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QO Conservation of Momentum

I —
. Newton’s second law states that:
[Time change rate of momentum of a system] = [Resultant external force acting on the system]
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0 Gonservation of Momentum

* Using divergence theorem for the control surface integrals, we obtained
following equation after noting that the limits do not change.
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- Expand the above equation using Ve (¢ A) — (A oV)p+pV e A
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» The differential form of the
momentum equation is:
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0 The Navier-Stokes Equations
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Stress Tensor

The stress tensor has nine COMmpoOnents:
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. Reynolds Transport Theorem
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re o 1s any intensive property corresponding to IN. (t.e., & = N per unit mass),
and 1t can be used for ditferent quantities as follows.

N al

Mas 1

Linear momen tum I7

Angular momentum RxV

Energy e n
N

Entropy 5 ‘;ge\‘

~

* e s the total energy per unit mass of the fluid.




0 Gonservation of Energy
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System Equation

» e is the total energy per unit mass of the fluid.
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0 Gonservation of Energy

Rate of work done on a fixed CV
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Energy transfers can occur
by heat and work

Rate of change of energy in CV
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0 Gonservation of Energy

Conservation of Energy
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0 Gonservation of Energy

Alternative form with Enthalpy

* Enthalpyisdefinedash =e +p/p

* |tiscommon to combine pressure work and internal energy
flux into enthalpy flux.

* Also, often gravity is the only body force actingona CV. It is
then included as part of internal energy terms.
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3 Discussion of Flow Governing Equations

The properties and the flow pattern of a moving fluid are governed by the fundamental laws of
physics expression:

® (Conservation of mass

* (Conservation of momentum

¢ Conservation of energy

¢ Equation of state
’W}lcn the mathematical equations expression these laws are solved satisfying the approximate mitial
and boundary conditions, the fluid properties and the flow pattern results.

These conservation equations involved three scalar fields (i.e., g, P, T ) and one vector field (ie.,

V') as the unknown functions.

Conservation laws for ]:fqu’uriom Number of Eqns. | Order of Eqns. | Total order
Mass L“ L4V ,'ﬂ ] | 1 1
Momentum ;—; ( ) () 3 2 ]
- _\-;;+ V-F+ f'
Energy 1 2 2
Equation of state p= f{p.]"} 1 0 0
Total 6 9 0
¢ Independent variables: qy: G, 5.1
¢  Dependent variables: p.P.T.V.V,.V,
® Prescribed quantities: f“, U(T). ¢, (T), R, etc.

¢ There are six equations and six dependent variables = Equations can be solved.

¢ The sum of the order of the differential equations is equal to nine and we need nine
boundary conditions.

¢ The conservation equations are nonlinear, that is coefficients of some of the derivatives are
dependent variables. Need an interactive solution.

* All equations are coupled and hence must be solved for simultaneously.
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