Potential Flow & Potential Function Lecture # 17:

Dr. Hui HU

Department of Aerospace Engineering Iowa State University, 2251 Howe Hall, Ames, IA 50011-2271

Tel: 515-294-0094 / Email: huhui@iastate.edu

Integral of Euler Equation in Irrotational Flows

Potential Flow:

- Definition: A non-heat conducting, homogeneous, inviscid, incompressible (i.e., ideal fluid), and irrotational flow is defined as potential flow.
- For potential flows, the governing equations of the Fluid flow are:
 - 1). Continuity equation:

$$\nabla ullet \vec{V} = 0$$

2). Euler equation
$$\frac{\partial \vec{V}}{\partial t} + \nabla (\frac{\vec{V} \cdot \vec{V}}{2} + \frac{P}{\rho} - U) - \vec{V} \times (\nabla \times \vec{V}) = 0$$

$$\Rightarrow \frac{\partial \vec{V}}{\partial t} + \nabla (\frac{\vec{V} \cdot \vec{V}}{2} + \frac{P}{\rho} - U) = 0$$

$$if \ U = -g \ Z \Rightarrow \frac{\partial \vec{V}}{\partial t} + \nabla (\frac{\vec{V} \cdot \vec{V}}{2} + \frac{P}{\rho} + gZ) = 0$$

Velocity Potential:Φ

<u>Definition</u>: Velocity potential is defined only for ideal, irrotational flow for either steady or unsteady flows as:

$$ec{V} =
abla \phi$$

• Since:

$$\vec{V} = V_1 \hat{e}_1 + V_2 \hat{e}_2 + V_3 \hat{e}_3$$

$$\nabla \phi = \frac{\partial \phi}{h_1 \partial q_1} \hat{e}_1 + \frac{\partial \phi}{h_2 \partial q_2} \hat{e}_2 + \frac{\partial \phi}{h_3 \partial q_3} \hat{e}_3$$

• Therefore:

$$V_1 = \frac{1}{h_1} \frac{\partial \phi}{\partial q_1}; \qquad V_2 = \frac{1}{h_2} \frac{\partial \phi}{\partial q_2}; \qquad V_3 = \frac{1}{h_3} \frac{\partial \phi}{\partial q_3}$$

Velocity Potential: Ф

Since:
$$\vec{V} = \nabla \Phi$$
 and $\nabla \cdot \vec{V} = 0$

$$\Rightarrow \nabla \cdot \vec{V} = \nabla \cdot \nabla \Phi = \nabla^2 \Phi = 0$$

Therefore, the potential function satisfies the Laplace Equation.

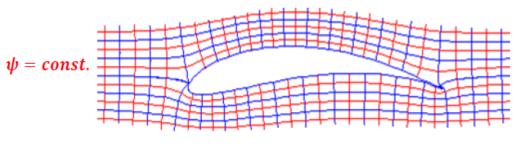
$$\nabla^2 \Phi = 0$$

Potential function

- Stream function $\psi(x,y)$ is defined so that \vec{V} is parallel to level contours at every point
- Potential function $\phi(x,y)$ is defined so that \vec{V} is normal to level surfaces $\phi=const.$ at every point

Can define: $\vec{V} = \vec{\nabla} \phi$

.e.: $u = \frac{\partial \phi}{\partial x}$, $v = \frac{\partial \phi}{\partial y}$



The Joukowski airfoil by John H. Mathews and Russell W. Howell California State University Fullerton

 $\phi = const.$

 $\psi = const.$ And $\phi = const.$ are normal to each other

Stream function and potential function (2D)

Stream function

Cartesian:
$$u = \frac{\partial \psi}{\partial y}$$
 , $v = -\frac{\partial \psi}{\partial x}$

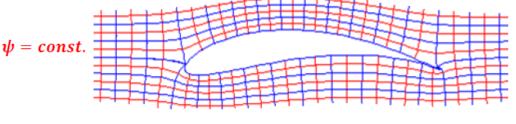
Polar:
$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
 , $v_\theta = -\frac{\partial \psi}{\partial r}$

 $\phi = const.$

Potential function

Cartesian:
$$u = \frac{\partial \phi}{\partial x}$$
 , $v = \frac{\partial \phi}{\partial y}$

Polar:
$$v_r = \frac{\partial \phi}{\partial r}$$
 , $v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$



The Joukowski airfoil by John H. Mathews and Russell W. Howell California State University Fullerton

$$\psi = const.$$
 And $\phi = const.$ are normal to each other

Potential function and irrotational flow

Recall vorticity

$$\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

$$\omega = \frac{\partial}{\partial x} \left(\frac{\partial \phi}{\partial y} \right) - \frac{\partial}{\partial y} \left(\frac{\partial \phi}{\partial x} \right) = \frac{\partial^2 \phi}{\partial x \partial y} - \frac{\partial^2 \phi}{\partial y \partial x} = 0$$

Therefore, potential function can only be defined for irrotational flows

Stream function and potential function (2D)

Stream function

Cartesian:
$$u = \frac{\partial \psi}{\partial y}$$
 , $v = -\frac{\partial \psi}{\partial x}$

Polar:
$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
 , $v_\theta = -\frac{\partial \psi}{\partial r}$

 $\psi = const.$

Potential function

Cartesian:
$$u=\frac{\partial\phi}{\partial x}$$
 , $v=\frac{\partial\phi}{\partial y}$

Polar:
$$v_r = \frac{\partial \phi}{\partial r}$$
 , $v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$

The Joukowski airfoil by John H. Mathews and Russell W. Howell California State University Fullerton

 $\phi = const.$

$$\psi = const.$$
 And $\phi = const.$ are normal to each other

The stream function for an incompressible flow field is given by

$$\psi(x,y) = 3x^2y - y^3$$

Sketch the streamlines passing through the origin and find the potential function.

The stream function for an incompressible flow field is given by

$$\psi(x,y) = 3x^2y - y^3$$

Sketch the streamlines passing through the origin and find the potential function.

Streamlines are curves of $\psi = const.$ At origin $x = 0, y = 0 \rightarrow \psi = 0$ then

$$3x^2y - y^3 = 0 \rightarrow y = 0$$
 , and $y = \pm \sqrt{3}x$

$$u = \frac{\partial \psi}{\partial y} = \frac{\partial}{\partial y} (3x^2y - y^3) = 3x^2 - 3y^2$$
$$v = -\frac{\partial \psi}{\partial x} = -\frac{\partial}{\partial x} (3x^2y - y^3) = -6xy$$

$$u = \frac{\partial \phi}{\partial x} \to \phi(x, y) = \int (3x^2 - 3y^2) dx = x^3 - 3y^2 x + f(y)$$
$$v = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} (x^3 - 3y^2 x + f(y)) = -6xy + f'(y) \equiv -6xy$$
$$f'(y) = 0 \to f(y) = C$$

$$\phi(x,y) = x^3 - 3y^2x$$

$$u = 3x^2 - 3y^2$$
, $v = -6xy$

