Potential Flow & Potential Function Lecture # 18:

Dr. Hui HU

Department of Aerospace Engineering Iowa State University, 2251 Howe Hall, Ames, IA 50011-2271

Tel: 515-294-0094 / Email: huhui@iastate.edu

Velocity Potential: Φ

<u>Definition</u>: Velocity potential is defined only for ideal, irrotational flow for either steady or unsteady flows as:

$$ec{V} =
abla \phi$$

• Since:

$$\vec{V} = V_1 \hat{e}_1 + V_2 \hat{e}_2 + V_3 \hat{e}_3$$

$$\nabla \phi = \frac{\partial \phi}{h_1 \partial q_1} \hat{e}_1 + \frac{\partial \phi}{h_2 \partial q_2} \hat{e}_2 + \frac{\partial \phi}{h_3 \partial q_3} \hat{e}_3$$

Therefore:

$$V_1 = \frac{1}{h_1} \frac{\partial \phi}{\partial q_1}; \qquad V_2 = \frac{1}{h_2} \frac{\partial \phi}{\partial q_2}; \qquad V_3 = \frac{1}{h_3} \frac{\partial \phi}{\partial q_3}$$

Stream function and potential function (2D)

 $\psi = const.$

Stream function

Cartesian:
$$u = \frac{\partial \psi}{\partial y}$$
 , $v = -\frac{\partial \psi}{\partial x}$

Polar:
$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
 , $v_\theta = -\frac{\partial \psi}{\partial r}$

 $\phi = const.$

Potential function

Cartesian:
$$u = \frac{\partial \phi}{\partial x}$$
 , $v = \frac{\partial \phi}{\partial y}$

Polar:
$$v_r = \frac{\partial \phi}{\partial r}$$
 , $v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$

$$\psi = const.$$
 And $\phi = const.$ are normal to each other

California State University Fullerton

The stream function for an incompressible flow field is given by

$$\psi(x,y) = 3x^2y - y^3$$

Sketch the streamlines passing through the origin and find the potential function.

The stream function for an incompressible flow field is given by

$$\psi(x,y) = 3x^2y - y^3$$

Sketch the streamlines passing through the origin and find the potential function.

Streamlines are curves of $\psi = const.$ At origin $x = 0, y = 0 \rightarrow \psi = 0$ then

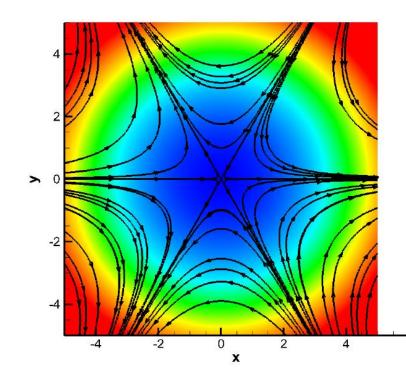
$$3x^2y - y^3 = 0 \rightarrow y = 0$$
 , and $y = \pm \sqrt{3}x$

$$u = \frac{\partial \psi}{\partial y} = \frac{\partial}{\partial y} (3x^2y - y^3) = 3x^2 - 3y^2$$
$$v = -\frac{\partial \psi}{\partial x} = -\frac{\partial}{\partial x} (3x^2y - y^3) = -6xy$$

$$u = \frac{\partial \phi}{\partial x} \to \phi(x, y) = \int (3x^2 - 3y^2) dx = x^3 - 3y^2 x + f(y)$$
$$v = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} (x^3 - 3y^2 x + f(y)) = -6xy + f'(y) \equiv -6xy$$
$$f'(y) = 0 \to f(y) = C$$

$$\phi(x,y) = x^3 - 3y^2x$$

$$u = 3x^2 - 3y^2$$
, $v = -6xy$



The 2D flow of inviscid incompressible flow in the vicinity of a 'corner' is described by the stream function:

$$\psi(r,\theta) = 2r^2 \sin 2\theta$$

Find the components of velocity field and the potential function

The 2D flow of inviscid incompressible flow in the vicinity of a 'corner' is described by the stream function:

$$\psi(r,\theta) = 2r^2 \sin 2\theta$$

Find the components of velocity field and the potential function

$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = \frac{1}{r} \frac{\partial}{\partial \theta} (2r^2 \sin 2\theta) = \frac{1}{r} (4r^2 \cos 2\theta)$$

$$v_r = 4r\cos 2\theta$$

$$v_{\theta} = -\frac{\partial \psi}{\partial r} = -\frac{\partial}{\partial r} (2r^2 \sin 2\theta) = -4r \sin 2\theta \rightarrow v_{\theta} = -4r \sin 2\theta$$

$$v_r = \frac{\partial \phi}{\partial r} \to \phi(r, \theta) = \int 4r \cos 2\theta \, dr = 2r^2 \cos 2\theta + f(\theta)$$

$$v_{\theta} = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = \frac{1}{r} \frac{\partial}{\partial \theta} (2r^2 \cos 2\theta + f(\theta)) = \frac{1}{r} (-4r^2 \sin 2\theta + f'(\theta)) \equiv -4r \sin 2\theta$$
$$\rightarrow f'(\theta) = 0 \rightarrow f(\theta) = C$$

$$\phi(r,\theta) = 2r^2\cos 2\theta + C$$

When could ψ and ϕ be defined?

1. A velocity field that does not satisfy continuity : Not physical! $\rightarrow \psi$ can not be defined and there is no reason to define ϕ !

Example:
$$u = e^x y$$
, $v = 2xy$

Continuity:
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = e^x y + 2x \neq 0$$
 everywhere in (x, y) plane $u = \frac{\partial \psi}{\partial y} \to \psi(x, y) = \int e^x y \, dy = e^x \frac{y^2}{2} + f(x)$ $v = -\frac{\partial \psi}{\partial x} = -\frac{\partial}{\partial x} \left(e^x \frac{y^2}{2} + f(x) \right) = -e^x \frac{y^2}{2} - f'(x) \equiv 2xy$ $f'(x) = -2xy - e^x \frac{y^2}{2}$

f'(x) can not be a function of y! Therefore, ψ can not be defined.

Same issue will come up calculating ϕ

Rotational flow example

2. A velocity field that satisfies continuity, but it is rotational: We can define ψ but not ϕ

Example:
$$u = xy$$
, $v = -\frac{y^2}{2}$
Continuity: $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = y - y = 0$ \checkmark satisfied
$$u = \frac{\partial \psi}{\partial y} \to \psi(x, y) = \int xy \, dy = x \frac{y^2}{2} + f(x)$$

$$v = -\frac{\partial \psi}{\partial x} = -\frac{\partial}{\partial x} \left(x \frac{y^2}{2} + f(x) \right) = -\frac{y^2}{2} - f'(x) \equiv -\frac{y^2}{2}$$
$$\to f'(x) = 0 \to f = C = \text{const.}$$
$$\psi(x, y) = x \frac{y^2}{2} + C$$

Rotational flow example

$$u = \frac{\partial \phi}{\partial x} \to \phi(x, y) = \int xy \, dx = \frac{1}{2}x^2y + f(y)$$

$$v = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} \left(\frac{1}{2} x^2 y + f(y) \right) = \frac{1}{2} x^2 + f'(y) \equiv -\frac{y^2}{2}$$

$$\to f'(y) = -\frac{1}{2}(x^2 + y^2)$$

Again f' can not be a function of x, therefore ϕ can not be defined.

Irrotational flow example

- 3. A velocity field that is irrotational ($\omega=0$) but doesn't satisfy continuity : We can define a ϕ but not ψ . This is still an unphysical field.
- 4. A velocity field that satisfies continuity and is irrotational: Both ψ and ϕ can be defined

Example:
$$u=2x$$
, $v=-2y$
Continuity: $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 2 - 2 = 0$ \checkmark satisfied $u = \frac{\partial \psi}{\partial y} \to \psi(x,y) = \int 2x \ dy = 2xy + f(x)$ $v = -\frac{\partial \psi}{\partial x} = -\frac{\partial}{\partial x} \left(2xy + f(x)\right) = -2y - f'(x) \equiv -2y$ $\to f'(x) = 0 \to f = C = \text{const.}$

 $\psi(x,y) = 2xy + C$

Irrotational flow example

$$u = \frac{\partial \phi}{\partial x} \to \phi(x, y) = \int 2x \, dx = x^2 + f(y)$$

$$v = \frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} (x^2 + f(y)) = f'(y) \equiv -2y$$

$$\to f(y) = -y^2 + C$$

$$\phi(x, y) = x^2 - y^2 + C$$

Stream and potential flow example

The velocity component in a steady, incompressible 2D flow field are: u=2y , v=4x

Determine stream function and draw streamlines. Indicate the direction of flow along the streamlines.

$$u = \frac{\partial \psi}{\partial y} = 2y \to \psi(x, y) = \int 2y \, dy = y^2 + f(x)$$

$$v = -\frac{\partial \psi}{\partial x} = -\frac{\partial}{\partial x} \left(y^2 + f(x) \right) = -f'(x) \equiv 4x$$

$$\to f'(x) = -4x \to f(x) = -2x^2 + C$$

$$\psi(x, y) = -2x^2 + y^2 + C$$

 ${\cal C}$ is an arbitrary constant and we can choose it to be zero. Therefore:

$$\psi(x,y) = -2x^2 + y^2$$

Example -continued

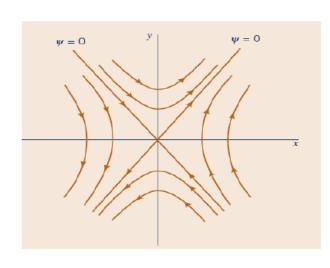
Streamlines can be determined by setting $\psi = const.$ and plotting the resulting function.

Let's start with
$$\psi = 0 \rightarrow -2x^2 + y^2 = 0 \rightarrow y = \pm \sqrt{2}x$$

Straight lines going through origin

For
$$\psi=a$$

$$-2x^2+y^2=a\to \frac{y^2}{a}-\frac{x^2}{a/2}=1$$
 equation of a hyperbola To find the streamline direction If $x>0\to v=4x>0$ and if $x<0\to v<0$



Stream function and potential function (2D)

 $\psi = const.$

Stream function

Cartesian:
$$u = \frac{\partial \psi}{\partial y}$$
 , $v = -\frac{\partial \psi}{\partial x}$

Polar:
$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
 , $v_\theta = -\frac{\partial \psi}{\partial r}$

 $\phi = const.$

Potential function

Cartesian:
$$u = \frac{\partial \phi}{\partial x}$$
 , $v = \frac{\partial \phi}{\partial y}$

Polar:
$$v_r = \frac{\partial \phi}{\partial r}$$
 , $v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$

$$\psi = const.$$
 And $\phi = const.$ are normal to each other

California State University Fullerton

For 2-D flow

- Any irrotational and incompressible flow has a velocity potential ϕ and stream function ψ that both satisfy Laplace equation.
- Conversely any solution represents the velocity potential ϕ or stream function ψ for an irrotational and incompressible flow.
- A powerful procedure for solving irrotational flow problems is to represent ϕ and ψ by linear combinations of known solutions of Laplace equation.

$$\phi = \sum_{i=1}^{N} C_i \phi_i;$$

$$\psi = \sum_{i=1}^N C_i \psi_i$$

Finding the coefficients C_i so that the boundary conditions are satisfied both far from the body and the body surface.

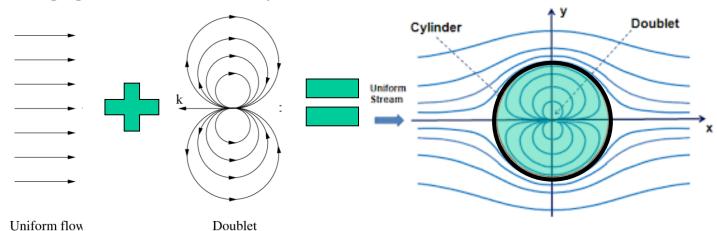
Say ϕ_1 and ϕ_2 are solutions of $\nabla^2 \phi = 0$

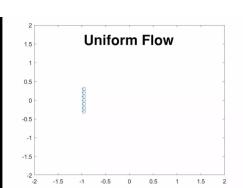
i.e.,
$$\nabla^2 \phi_1 = 0$$
; $\nabla^2 \phi_2 = 0$

$$\nabla^2 \phi_2 = 0$$

Then $\phi = A_1 \phi_1 + A_2 \phi_2$ is also a solution of the Laplace equation

A complicated flow pattern for an irrotational and incompressible flow can be synthesized by adding together a number of elementary flows which are also irrotational and incompressible.





The Advantages of using stream function and potential function to solve aerodynamics problems

- It can replace the nonlinear flow controlling equations (such as N-S equations) by Linear equations (Laplace equation).
- 2. It reduces the number of unknown numbers, i.e., $\begin{bmatrix} u \\ v \\ w \\ \rho \end{bmatrix} \Rightarrow \psi \quad or \quad \phi$
- 3. The solutions of the Laplace equation are adjustable.
- A complex flow can be decomposed as the summation of many simple flows.

