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❑ Thin Airfoil Theory 
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Assumptions:
• 2-dimensions
• Inviscid* 
• Incompressible* 
• Irrotational*
• Small α  
• Small max τ /c (i.e., airfoil thickness) 
• Small max z/ c ((i.e., airfoil camber)

Before stall



Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

❑ Thin Airfoil Theory 
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❑ Thin Airfoil Theory 

• Replace thin airfoil with a camber line (assume small thickness and camber) 

• Derivation of formula to predict the  aerodynamic force and moment generated 
by a thin airfoil. 

• Determination of the pressure and aerodynamic centers.

• Application of the thin airfoil theory to symmetric airfoils and cambered airfoils.
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❑ Thin Airfoil Theory 

Principle: 
• Replace thin airfoil with the mean camber line (MCL) because of the small 

thickness and camber of the airfoil

• MCL assumed to be a streamline of the flow around the thin airfoil.

• To force the MCL to be a streamline, the sum of all velocity components normal to 
the MCL must be equal to zero. 

, , 0n vortex induced nV V −+ =
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❑ Thin Airfoil Theory 

, , 0n vortex induced nV V −+ =
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❑ Thin Airfoil Theory 

• To force the mean camber line to be a streamline, the sum of all velocity 
components normal to the mcl must be equal to zero. 

• Now determine the component of the freestream velocity normal to the mcl.

, sin( );nV V   = +
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• Within thin airfoil theory approximation:
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❑ Thin Airfoil Theory 

• Consider the flow induced by an elemental vortex sheet ds at a point P on the 
vortex sheet. 

• Velocity induced by a 2-D vortex is:

• Similarly, the velocity at the point P induced by the vortex sheet of infinitesimal 
length ds is given by:
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❑ Thin Airfoil Theory 

• Within thin airfoil theory approximation:
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❑ Thin Airfoil Theory 

• To force the mean camber line to be a streamline, the sum of all velocity 
components normal to the mcl must be equal to zero. 

• Since

• Therefore:

, , 0n vortex induced nV V −+ =
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❑ Thin Airfoil Theory 

❑ The integral equation of thin 
airfoil theory:

• The Kutta-Joukowski Lift Theorem states the lift per unit length of an airfoil is 

equal to the density () of the air times the strength of the rotation () times the 

velocity (V) of the air. 

0
( ) ;

c

x dx = 

❑ For a given airfoil geometry, dz/dx is known. the only unknown in the above 
equation is  (x). 

❑ If  (x) can be determined, then 
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❑ Thin Airfoil Theory 

• To solve the integral equation, we first make a transformation:
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❑ The integral equation of 

thin airfoil theory:
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❑ Thin Airfoil Theory 

❑ Solution of the integral equation for a symmetrical airfoil:

Since  it is symmetrical airfoil, therefore: 
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❑ Thin Airfoil Theory 
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❑ The integral equation of thin 

symmetrical airfoil.

❑ Solution of the equations:

❑ Verification of the solution:
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❑ Thin Airfoil Theory 
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❑ The integral equation of thin 
airfoil theory for symmetric 
airfoils:

❑ Solution of the equation:
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❑ Thin Airfoil Theory 

❑ Kutta condition:
•  For a given airfoil at a given 

angle of attack, the value of   
around the airfoil is such that the 
flow would leaves the trailing 
edge smoothly.

• Case #1

• Case #2



Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

❑ Thin Airfoil Theory 

❑ Is Kutta condition satisfied at TE?
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• Case #1

• Case #2
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