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❑ Thin Airfoil Theory 
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Assumptions:
• 2-dimensions
• Inviscid* 
• Incompressible* 
• Irrotational*
• Small α  
• Small max τ /c (i.e., airfoil thickness) 
• Small max z/ c ((i.e., airfoil camber)

Before stall
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❑ Thin Airfoil Theory 
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❑ Thin Airfoil Theory 

• Replace thin airfoil with a camber line (assume small thickness and camber) 

• Derivation of formula to predict the  aerodynamic force and moment generated 
by a thin airfoil. 

• Determination of the pressure and aerodynamic centers.

• Application of the thin airfoil theory to symmetric airfoils and cambered airfoils.
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❑ Thin Airfoil Theory 

Principle: 
• Replace thin airfoil with the mean camber line (MCL) because of the small 

thickness and camber of the airfoil

• MCL assumed to be a streamline of the flow around the thin airfoil.

• To force the MCL to be a streamline, the sum of all velocity components normal to 
the MCL must be equal to zero. 

, , 0n vortex induced nV V −+ =
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❑ Thin Airfoil Theory 

, , 0n vortex induced nV V −+ =
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❑ Thin Airfoil Theory 

• To force the mean camber line to be a streamline, the sum of all velocity 
components normal to the mcl must be equal to zero. 

• Now determine the component of the freestream velocity normal to the mcl.
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• Within thin airfoil theory approximation:
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❑ Thin Airfoil Theory 

• Consider the flow induced by an elemental vortex sheet ds at a point P on the 
vortex sheet. 

• Velocity induced by a 2-D vortex is:

• Similarly, the velocity at the point P induced by the vortex sheet of infinitesimal 
length ds is given by:
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❑ Thin Airfoil Theory 

• Within thin airfoil theory approximation:
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❑ Thin Airfoil Theory 

• To force the mean camber line to be a streamline, the sum of all velocity 
components normal to the mcl must be equal to zero. 

• Since

• Therefore:
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❑ Thin Airfoil Theory 

❑ The integral equation of thin 
airfoil theory:

• The Kutta-Joukowski Lift Theorem states the lift per unit length of an airfoil is 

equal to the density () of the air times the strength of the rotation () times the 

velocity (V) of the air. 

0
( ) ;

c

x dx = 

❑ For a given airfoil geometry, dz/dx is known. the only unknown in the above 
equation is  (x). 

❑ If  (x) can be determined, then 
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❑ Thin Airfoil Theory 

• To solve the integral equation, we first make a transformation:
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❑ Thin Airfoil Theory 

❑ Solution of the integral equation for a symmetrical airfoil:

Since  it is symmetrical airfoil, therefore: 
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❑ Thin Airfoil Theory 
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❑ The integral equation of thin 

symmetrical airfoil.

❑ Solution of the equations:

❑ Verification of the solution:
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❑ Thin Airfoil Theory 
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❑ The integral equation of thin 
airfoil theory for symmetric 
airfoils:

❑ Solution of the equation:
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❑ Thin Airfoil Theory 

❑ Kutta condition:
•  For a given airfoil at a given 

angle of attack, the value of   
around the airfoil is such that the 
flow would leaves the trailing 
edge smoothly.

• Case #1

• Case #2
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❑ Thin Airfoil Theory 

❑ Is Kutta condition satisfied at TE?
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• Case #1

• Case #2
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