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❑ Thin Airfoil Theory 

Principle: 

• Replace thin airfoil with the mean camber line (MCL) because of the small 
thickness and camber of the airfoil

• MCL assumed to be a streamline of the flow around the thin airfoil.

• To force the MCL to be a streamline, the sum of all velocity components normal to 
the MCL must be equal to zero. 

, , 0n vortex induced nV V −+ =
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❑ Lift coefficient of a cambered airfoil
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• The value of L0 will be determined if the MCL is 
given for an airfoil, which is not a function of .

• The slope of the Lift coefficient profile is still 2.

2LdC

d



=

❑ Thin Airfoil Theory – Cambered Airfoil 
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❑ Moment about the airfoil leading edge
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❑ Thin Airfoil Theory – Cambered Airfoil 

• No dependency on 𝛼 for aerodynamic center
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❑ Thin Airfoil Theory – Cambered Airfoil 

❑ Center of Lift  or center of pressure on an airfoil

, /4 0M cC = 4 1, 2/ ( )
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❑ Thin Airfoil Theory 

Before stall

after stall

Assumptions:
• 2-dimensions
• Potential flows
• Small α  
• Small max τ /c (i.e., airfoil thickness) 
• Small max z/ c ((i.e., airfoil camber)

Before stall

What’s 
happed here?
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Flow Separation and Transition on  Low-Reynolds-number Airfoils

• Since laminar boundary layers are unable to withstand any significant adverse pressure 

gradient, laminar flow separation is usually found on low-Reynolds-number airfoils.  

Post-separation behavior of the laminar boundary layers would affect the aerodynamic 

performances of the low-Reynolds-number airfoils (Re<106 ) significantly.

• Separation bubbles are usually found to form on the upper surfaces of low-Reynolds-

number airfoils . Separation bubble would burst suddenly to cause airfoil stall at high 

AOA when the adverse pressure gradient becoming too big. 
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The GA(W)-1 Airfoil Used in the Present Study 
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(also labeled as NASA LS(1)-0417 )

(Hu et al., Journal of Fluid Engineering, 2009)
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Measured lift and drag coefficients
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Experimental Setup for PIV Measurements 

Experimental conditions:

000,68Re,/0.10 == CsmU

020 

Incoming flow velocity: 

Angle of Attack:

Nd:YAG Laser

CCD camera

laser sheet

mirror optics

test section

lower surface

digital delay generator

incoming

 flow

host 

computer
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Three Spatial Resolution Levels of the PIV Measurements 

Level 1: 

• A coarse level to study the global features of the 
flow structures around the airfoil.

• Measurement window size: 160mm140mm 

• Effective resolution: /C = 0.04

Level 2:

• A refined level to investigate the detailed features of  
the laminar boundary layer near the nose of the 
airfoil.

• Measurement window size: 40mm  30mm 

• Effective resolution:  /C = 0.01

Level 3:

• A super-fine level to elucidate the unsteady Kelvin-
Helmholtz vortex shedding, the turbulence transition  
of the shear layer, and the reattachment of the 
separated boundary layer at the rear end of the 
separation bubble.

• Measurement window size:  14mm  8mm.

• Effective resolution: /C = 0.0035
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PIV Measurement Results 
( AOA=6.0 deg, Re=68,000, spatial resolution /C  0.04 )

A. instantaneous results B. ensemble-averaged results

X (mm)

Y
(m

m
)

-20 0 20 40 60 80 100 120 140

-60

-40

-20

0

20

40

60 -1.0 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0

10 m/sstreamwise
velocity (m/s)

shadow region

GA(W)-1 airfoil

X (mm)

Y
(m

m
)

-20 0 20 40 60 80 100 120 140

-60

-40

-20

0

20

40

60 -1.0 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0

streamwise
velocity (m/s)

shadow region

GA(W)-1 airfoil



Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

PIV Measurement Results 
( AOA=10.0 degrees, Re=68,000, spatial resolution /C  0.04 )

A. instantaneous results
B. ensemble-averaged results

X (mm)

Y
(m

m
)

-20 0 20 40 60 80 100 120 140

-60

-40

-20

0

20

40

60 -1.0 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0

10 m/sstreamwise
velocity (m/s)

shadow region

GA(W)-1 airfoil

X (mm)

Y
(m

m
)

-20 0 20 40 60 80 100 120 140

-60

-40

-20

0

20

40

60 -1.0 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0

streamwise
velocity (m/s)

shadow region

GA(W)-1 airfoil



Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

PIV Measurement Results 
( AOA=12.0 degrees, Re=68,000, spatial resolution /C  0.04 )

A. instantaneous results
B. ensemble-averaged results

X (mm)

Y
(m

m
)

-20 0 20 40 60 80 100 120 140

-60

-40

-20

0

20

40

60 -1.0 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0

10 m/sstreamwise
velocity (m/s)

shadow region

GA(W)-1 airfoil

X (mm)

Y
(m

m
)

-20 0 20 40 60 80 100 120 140

-60

-40

-20

0

20

40

60 -1.0 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0

streamwise
velocity (m/s)

shadow region

GA(W)-1 airfoil



Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

PIV Measurement Results 
( AOA=6.0 degrees, Re=68,000, spatial resolution /C  0.01 )

A. instantaneous results
B. ensemble-averaged results
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PIV Measurement Results 
( AOA=10.0 degrees, Re=68,000, spatial resolution /C  0.01 )

A. instantaneous results
B. ensemble-averaged results
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PIV Measurement Results 
( AOA=12.0 degrees, Re=68,000, spatial  resolution /C  0.01 )

A. instantaneous results
B. ensemble-averaged results
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PIV Measurement Results 
( AOA=10.0 degrees, Re=68,000, spatial resolution level 3 )

A. instantaneous results
B. ensemble-averaged results
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PIV Measurement Results 

( AOA=10.0 degrees, Re=68,000, spatial resolution level 3 )
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Aerodynamic Hysteresis Phenomena

• Hysteresis is the property of systems that do not instantly react to a change, or do not completely 
return to their original state.

• The state of such a system usually depends on its immediate history.

• Aerodynamic hysteresis of an airfoil refers to the aerodynamic characteristics becomes history 
dependent, i.e., dependent on the sense of change of the angle of attack, near the airfoil stall angle. 

• Hysteresis phenomena have been found to be relatively common for round nosed airfoils at low 
Reynolds numbers.

Increasing AOA

decreasing AOA
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Measured airfoil lift and drag coefficient profiles
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The turbulence intensity of the incoming streams:  ~1.0%
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Measured airfoil lift and drag coefficient profiles

• The hysteresis loop was found to be clockwise in the lift coefficient profiles, and counter-clockwise in the drag 

coefficient profiles. 

• The aerodynamic hysteresis resulted in significant variations of lift coefficient, Cl, and lift-to-drag ratio, l/d,  

for the airfoil at a given angle of attack. 

• The lift coefficient and lift-to-drag ratio at AOA = 14.0 degrees were found to be Cl = 1.33 and l/d = 23.5 when 

the angle is at the increasing angle branch of the hysteresis loop. 

• The values were found to become Cl = 0.8 and l/d = 3.66  for the same AOA=14.0 degrees when the angle is at 

the deceasing angle branch of the hysteresis loop 
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Measured airfoil lift and drag coefficient profiles

Drag coefficient  vs. AOALift coefficient  vs. AOA

ReC = 400,000. 

The turbulence intensity of the incoming streams:  ~1.0%
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Measured surface pressure distribution around the airfoil 
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Measured Surface Pressure Distribution at AOA=14.0 Deg
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• Based in the measured surface pressure distribution, the separation, transition, and reattachment points at 

AOA=12.0 ~ 15.0 degrees were estimated to locate at X/C  0.05, X/C   0.08 and X/C   0.15 respectively.

• The length of the laminar separation bubble (i.e., the distance between the separation and reattachment 

points) was found to be ~ 10 % of the airfoil chord length, which is almost independent of the angle of attack.

Measured Surface Pressure Distribution at 

AOA=14.0 degrees
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Experimental Setup for PIV Measurements 

Nd:YAG Laser

CCD camera

laser sheet

mirror optics

test section

lower surface

digital delay generator

incoming

 flow

host 

computer

Experimental conditions:

000,160Re,/0.24 == CsmU

oo 0.20~0.4−=

Incoming flow velocity: 

Turbulent intensity: 

Angle of Attack:
%0.1~
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-0.10

-0.05

0

0.05

0.10

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Two Spatial Resolution Levels for the PIV Measurements 

Level 1: 

A coarse level to study the global features of the 

flow structures around the airfoil.

Measurement window size: 160mm140mm 

Effective resolution: /C = 0.018

Level 2:

A refined level to investigate the detailed features 

of  the laminar boundary layer near the nose of 

the airfoil.

Measurement window size: 40mm  30mm 

Effective resolution:  /C = 0.0046

Level 1Level 2
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Active Flow Control of Airfoil Stall by Using an 

Oscillating Bubble Burst Plate



Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

Findings

• Plate must be placed ahead of 10% chord

• Height greatly effects performance

• Delays stall by 2 degrees on NACA 0012

• Max lift coefficient increased by 0.1

• Rinoie, Okuno, and Sunada, 2009, “Airfoil Stall Suppression by Use of a Bubble 

Burst Control Plate”, AIAA Journal Vol. 47, No. 2, 2009

Will A Dynamic 

Burst Control 

Plate Improve 

Performance?

Active Flow Control on a Low-Reynolds Number Airfoil by 

Using an Oscillating Bubble Burst Plate
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Plate Sizing and Location

• Hinge Point: 5% chord

• Width: 2.5% chord

• Height: 0.5% chord

R/C Electric Motor & Cam 

Shaft

NACA 0012 Airfoil

• 300 mm Chord

• Span-wise Burst Control Plate

Conditions

• Smooth

• Stationary (Fully Deployed)

• Dynamic (30, 60, 120 Hz)

Active Control of Laminar Separation Bubble
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Experimental Setup for the Wind Tunnel Testing

Pressure Taps

Burst Plate

Camera

Airfoil

Camera

JR3

Airfoil
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a) b)

Lift Curve : Force Measurement Data

Rec = 130,000
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AoA = 14o AoA = 15o

AoA = 13oAoA = 12o

Measured Pressure Distributions
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Smooth Stationary

120 Hz

PIV measurements at AOA=14 deg.

Rec = 130,000
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Phase Averaged Measurement Results

h) Φ = 315o

g) Φ = 270o

f) Φ = 225o

e) Φ = 180od) Φ = 135o

c) Φ = 90o

b) Φ = 45o

a) Φ = 0o

ωz
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Boundary Layer Flow Separation Control by Using Dynamic Roughness

Source: Gall, Huebsch & Rothmayer, 2010.

Time Average of 3D 

Unsteady CFD 

Using Fluent
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Short separation 

bubble

Attached flow

Dynamic Roughness for Boundary Layer Flow Control

Dynamic

roughness

• Early 2D CFD results show 

separation control of LES

• 2D Results confirmed using 

3D CFD calculations

• Pressurized latex skin over a 

perforated surface is tested 

using smoke visualization

Source: Huebsch, 2004.

Source: Gall, Huebsch & Rothmayer, 2010.

Source: Gall, Huebsch & Rothmayer, 2010.
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Artificial Reynolds stresses

Mean 

flow

Source: Gall, Huebsch & Rothmayer, 2010.

Time Average of 3D 

Unsteady CFD 

Using Fluent

Local and Global Low-Order Modeling (and CFD, not shown)

Leading Edge AccelerationMultiple-Scales Boundary Layer Model

Predicted Mean Pressure Drop Pressure Drop Confirmed in 3D CFD Calculations

Source: Rothmayer & Huebsch, 2011
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SolidWorks Design

Statically Pressurized L.E.

Still from Video of Deformation

Test Model and Experimental Setup

Camera

Laser

Airfoil

Mirror

To Model

Valve

RC Engine

½ Hp. Motor

Pulley
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Active Flow Separation Control  by Using Dynamic Roughness

PIV Measurement Result at Re=50K

Grager, Hu, Rothmayer & Huebsch (2012)

T.K.E.

AOA=14 deg.

AOA=14 deg.
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Source: Gall, Huebsch & Rothmayer, 2010 and 2011 (to appear) .

Source: Rothmayer & Huebsch, 2011

Effects of Oscillation Frequency on Flow Control

Early Prediction of Low Amp. Control

3D CFD Prediction of Freq. Toggle

Freq. Sweep at 14 deg Design Case

Grager, Hu, Rothmayer & Huebsch (to appear)
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Source: Gall, Huebsch & Rothmayer, 2010 and 2011 (to appear) .

Source: Rothmayer & Huebsch, 2011

Effects of Oscillation Amplitude on Flow Control

Early Prediction of Low Amp. Control

3D CFD Prediction of Freq. Toggle

Test conditions: Re=75K, AOA=15 Deg.
Grager, Hu, Rothmayer & Huebsch (to appear)
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MORPHING AIRFOIL DESIGNS

• https://www.youtube.com/watch?v=L5KKumkXTqo

• https://www.youtube.com/watch?v=9ZpAHxMj5lU

https://www.youtube.com/watch?v=L5KKumkXTqo
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