Lecture # 30: Incompressible Flow over an Airfoil – Part 06 : Separation Bubbles

Dr. Hui HU

Department of Aerospace Engineering Iowa State University, 2251 Howe Hall, Ames, IA 50011-2271 Tel: 515-294-0094 / Email: <u>huhui@iastate.edu</u>

Thin Airfoil Theory

Principle:

- Replace thin airfoil with the mean camber line (MCL) because of the small thickness and camber of the airfoil
- MCL assumed to be a streamline of the flow around the thin airfoil.
- To force the MCL to be a streamline, the sum of all velocity components normal to the MCL must be equal to zero.

Thin Airfoil Theory – Cambered Airfoil

Lift coefficient of a cambered airfoil $L = \rho V_{\infty} \Gamma = \rho V_{\infty}^2 c [A_0 \pi + \frac{\pi}{2} A_1]$ $C_{L} = \frac{L}{\frac{1}{2}\rho V_{\infty}^{2}c} = \frac{\rho V_{\infty}^{2}c[A_{0}\pi + \frac{\pi}{2}A_{1}]}{\frac{1}{2}\rho V_{\infty}^{2}c} = 2\pi [A_{0} + A_{1}/2]$ $\therefore A_0 = \alpha + B_0 = \alpha - \frac{1}{\pi} \int_{\alpha}^{\pi} \frac{dz}{dx} d\theta; \quad A_1 = \frac{2}{\pi} \int_{\alpha}^{\pi} \frac{dz}{dx} \cos(\theta) d\theta$ $\therefore C_L = 2\pi [\alpha - \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{dz}{dx} (1 - \cos \theta) d\theta]$ $\alpha_{L0} = \frac{1}{\pi} \int_{0}^{\pi} \frac{dz}{dx} (1 - \cos\theta) d\theta$ $C_I = 2\pi [\alpha - \alpha_{I0}]$

- The value of α_{L0} will be determined if the MCL is given for an airfoil, which is not a function of α.
- The slope of the Lift coefficient profile is still 2π.

$$\frac{dC_L}{d\alpha} = 2\pi$$

Thin Airfoil Theory – Cambered Airfoil

Thin Airfoil Theory – Cambered Airfoil

Thin Airfoil Theory

Flow Separation and Transition on Low-Reynolds-number Airfoils

- Since laminar boundary layers are unable to withstand any significant adverse pressure gradient, laminar flow separation is usually found on low-Reynolds-number airfoils.
 Post-separation behavior of the laminar boundary layers would affect the aerodynamic performances of the low-Reynolds-number airfoils (Re<10⁶) significantly.
- Separation bubbles are usually found to form on the upper surfaces of low-Reynoldsnumber airfoils . Separation bubble would burst suddenly to cause airfoil stall at high AOA when the adverse pressure gradient becoming too big.

The GA(W)-1 Airfoil Used in the Present Study

IOWA STATE UNIVERSITY Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

Aerospace Engineering

Surface Pressure Coefficient distributions (Re=68,000)

Measured lift and drag coefficients

Experimental Setup for PIV Measurements

Three Spatial Resolution Levels of the PIV Measurements

Level 1:

- A coarse level to study the global features of the flow structures around the airfoil.
- Measurement window size: 160mm×140mm
- Effective resolution: $\Delta/C = 0.04$

Level 2:

- A refined level to investigate the detailed features of the laminar boundary layer near the nose of the airfoil.
- Measurement window size: 40mm × 30mm
- Effective resolution: $\Delta/C = 0.01$

Level 3:

- A super-fine level to elucidate the unsteady Kelvin-Helmholtz vortex shedding, the turbulence transition of the shear layer, and the reattachment of the separated boundary layer at the rear end of the separation bubble.
- Measurement window size: 14mm × 8mm.
- Effective resolution: △/C = 0.0035

PIV Measurement Results (AOA=6.0 deg, Re=68,000, spatial resolution $\Delta/C \approx 0.04$)

PIV Measurement Results

10 m/s

.

140

120

120

140

PIV Measurement Results

(AOA=12.0 degrees, Re=68,000, spatial resolution Δ /C \approx 0.04)

PIV Measurement Results (AOA=6.0 degrees, Re=68,000, spatial resolution $\Delta/C \approx 0.01$)

PIV Measurement Results

(AOA=10.0 degrees, Re=68,000, spatial resolution Δ /C \approx 0.01)

PIV Measurement Results (AOA=12.0 degrees, Re=68,000, spatial resolution $\Delta/C \approx 0.01$)

PIV Measurement Results (AOA=10.0 degrees, Re=68,000, spatial resolution level 3)

PIV Measurement Results (AOA=10.0 degrees, Re=68,000, spatial resolution level 3)

(Hu et al., Journal of Fluid Engineering, 2009)

Aerodynamic Hysteresis Phenomena

- Hysteresis is the property of systems that do not instantly react to a change, or do not completely return to their original state.
- The state of such a system usually depends on its immediate history.
- Aerodynamic hysteresis of an airfoil refers to the aerodynamic characteristics becomes history dependent, i.e., dependent on the sense of change of the angle of attack, near the airfoil stall angle.
- Hysteresis phenomena have been found to be relatively common for round nosed airfoils at low Reynolds numbers.

Measured airfoil lift and drag coefficient profiles

The turbulence intensity of the incoming streams: ~1.0%

Measured airfoil lift and drag coefficient profiles

 $Re_{C} = 160,000$

- The hysteresis loop was found to be clockwise in the lift coefficient profiles, and counter-clockwise in the drag coefficient profiles.
- The aerodynamic hysteresis resulted in significant variations of lift coefficient, C_b and lift-to-drag ratio, l/d, for the airfoil at a given angle of attack.
- The lift coefficient and lift-to-drag ratio at AOA = 14.0 degrees were found to be $C_l = 1.33$ and l/d = 23.5 when the angle is at the increasing angle branch of the hysteresis loop.
- The values were found to become $C_l = 0.8$ and l/d = 3.66 for the same AOA=14.0 degrees when the angle is at the deceasing angle branch of the hysteresis loop

Measured airfoil lift and drag coefficient profiles

Drag coefficient vs. AOA

 $Re_{C} = 400,000.$

The turbulence intensity of the incoming streams: ~1.0%

Measured surface pressure distribution around the airfoil

The turbulence intensity of the incoming streams: ~1.0%

Measured Surface Pressure Distribution at AOA=14.0 Deg

- Based in the measured surface pressure distribution, the separation, transition, and reattachment points at AOA=12.0 ~ 15.0 degrees were estimated to locate at X/C ≈ 0.05, X/C ≈ 0.08 and X/C ≈ 0.15 respectively.
- The length of the laminar separation bubble (i.e., the distance between the separation and reattachment points) was found to be ~ 10 % of the airfoil chord length, which is almost independent of the angle of attack.

(Russell, 1979)

Experimental Setup for PIV Measurements

Two Spatial Resolution Levels for the PIV Measurements

Level 1:

A coarse level to study the global features of the
flow structures around the airfoil.Measurement window size: $160mm \times 140mm$ Effective resolution: $\Delta/C = 0.018$

Level 2:

A refined level to investigate the detailed features of the laminar boundary layer near the nose of the airfoil.

Measurement window size: $40mm \times 30mm$ Effective resolution: $\Delta/C = 0.0046$

PIV Measurement results

PIV Measurement results

Measured Turbulence Kinetic Energy Distributions

Refined PIV Measurement Results

Refined PIV Measurement Results

Active Flow Control of Airfoil Stall by Using an Oscillating Bubble Burst Plate

Active Flow Control on a Low-Reynolds Number Airfoil by Using an Oscillating Bubble Burst Plate

• Rinoie, Okuno, and Sunada, 2009, "Airfoil Stall Suppression by Use of a Bubble Burst Control Plate", AIAA Journal Vol. 47, No. 2, 2009

- Delays stall by 2 degrees on NACA 0012
- Max lift coefficient increased by 0.1

Active Control of Laminar Separation Bubble

NACA 0012 Airfoil

- 300 mm Chord
- Span-wise Burst Control Plate

Plate Sizing and Location

- Hinge Point: 5% chord
- Width: 2.5% chord
- Height: 0.5% chord

R/C Electric Motor & Cam Shaft

Conditions

- Smooth
- Stationary (Fully Deployed)
- Dynamic (30, 60, 120 Hz)

Experimental Setup for the Wind Tunnel Testing

Lift Curve : Force Measurement Data

Re_c = 130,000

Aerospace Engineering

Measured Pressure Distributions

PIV measurements at AOA=14 deg.

Phase Averaged Measurement Results

Boundary Layer Flow Separation Control by Using Dynamic Roughness

Source: Gall, Huebsch & Rothmayer, 2010.

Time Average of 3D **Unsteady CFD Using Fluent**

Dynamic Roughness for Boundary Layer Flow Control

• Early 2D CFD results show separation control of LES

2D Results confirmed using

3D CFD calculations

Dynamic roughness Source: Huebsch, 2004.

Source: Gall, Huebsch & Rothmayer, 2010.

• Pressurized latex skin over a perforated surface is tested using smoke visualization

Source: Gall, Huebsch & Rothmayer, 2010.

Local and Global Low-Order Modeling (and CFD, not shown)

Predicted Mean Pressure Drop

Pressure Drop Confirmed in 3D CFD Calculations

Time Average of 3D Unsteady CFD Using Fluent

Source: Gall, Huebsch & Rothmayer, 2010.

Test Model and Experimental Setup

SolidWorks Design

Statically Pressurized L.E.

Still from Video of Deformation

Active Flow Separation Control by Using Dynamic Roughness

Effects of Oscillation Frequency on Flow Control

Grager, Hu, Rothmayer & Huebsch (to appear)

IOWA STATE UNIVERSITY Copyright © by Dr. Hui Hu

.....ing

6

7

Effects of Oscillation Amplitude on Flow Control

Source: Gall, Huebsch & Rothmayer, 2010 and 2011 (to appear) .

Test conditions: Re=75K, AOA=15 Deg.

MORPHING AIRFOIL DESIGNS

https://www.youtube.com/watch?v=L5KKumkXTqo

https://www.youtube.com/watcn?v=y2pAmxivij>iU

