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1 SuPersoNIC Air TraveL- NASA & LM

https://www.yahoo.com/news/experimental-aircraft-used-test-supersonic-
1420{8339.html?guccounter=1 on Nov 13, 2021
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1 3D WinG AERODYNAMICS

* Air flow leaks around wing tips produces a trailing vortex at each wing tip.

Wingtip Vortex
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2 3D Wine AERODYNAMICS

* Trailing vortices at each wing tip would drag
the surrounding air inducing a velocity
component in the downward direction -
downwash.

* The downwash combines with the local
freestream to create a local relative wind.

Tip vortex
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2 3D Wine AERODYNAMICS

- |
The downwash has two important effects:

e Downwash and Induced Drag
* The effective angle of attack is reduced to cause

i — lift reduction.
€ (= { * Induced drag is created due to tilting of the local
lift vector.
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* Velocity field normal to a wing comprising a transverse
bound vortex of circulation I plus downwash generated i Induced Velocit
by a semi-infinite system of free vortices in the wake. Effective Angle of Attack y
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The downwash has two important effects:

* The effective angle of attack is reduced to cause lift reduction.
* Induced drag is created due to tilting of the local lift vector.

Co

2d airfoil
(infinite AR}

L Induced drag

Llﬁ Normal Force

Va
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* Wingspan = b, wing area=S

* Aspect ratio
AR = B2/S

= elliptical wing
trapezoidal wing
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d Aerodynamic drags

* Skin friction drag, D;— drag caused by skin friction.

* Pressure drag, D, — drag due to flow separation,
which causes pressure differences between front and
back of the wing.

Airfoil
motior

* Induced drag, D;,- drag due to lift force redirection
caused by the induced flow or downwash.

Df+Dp
q.8

Induced drag coefficient, C, - nondimensional induced drag

C:D"

g8

Total drag coefficient, CD

C,=C,+C)
Airfoil data Finite wing theory

* The total drag = friction drag + pressure drag + induced drag.

*__Total drag coefficient C, = (D; + D+ D) /(1/2pV..2S )




] Thin Rirfoil Theory

Circulation around thin airfoil 2y Thin Alrfoll Theory Summary

* Recall from thin airfoil solution ) = thickness

1+ cosf .
(9) = ZV (C{ AO) g Z A sin nQ] z(x) = camber line
For a flat plate airfoil (i.e., no camber— 4, = A1 = A, =
1+ cosf
V() = 20— sin @

The total circulation around the airfoil is

(& T C
:j y(x)dx :f y(6)=sinf db
0 0 2

T
[= cVooaf (1+cosh)dl =ncV,
0

And airfoil lift

L'=pV,T

Nonsymmetrical




- Lumped Vortex Model

Lumped vortex element (model)

* |t is sometimes useful to represent the entire circulation
with a single vortex

* Since lift acts at center of pressure, naturally the vortex

should be placed there (i.e., x = c/4)

* However, with distributed y, the zero normal velocity is

enforced on the surface of airfoil. Where should we enforce
this boundary condition for single vortex case?
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2 3D Wing Aerodynamics

" 3-D Vortex Theory: the vortex filament

flow around a real wing = uniform flow + vortices

S~ PN

——
L = 'p Um T
2D: Straight vortex line: 3D general: curved vortex line 2D airfoil aerodynamics
T Upwash
Vortex filament 4 T
of strength ' 6 _(
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Downwash
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Upwash Tip vortex

induced velocity V' =—

o O 3D wing aerodynamics




] Thin Airfeil Theory

O The Kutta-Joukowski Lift Theorem:

—
L = pV, T Ue
Q Helmholtz’s Vortex theorem (basic principles L=pUpl
of vortex behavior).
* The strength of a vortex filament is constant c,
along its length. %
* Avortex filament cannot end in a fluid; it must o
extent to the boundaries of the fluid or form a
closed path.

L Kelvin’s vortex theorem:

e Circulation around a closed curve formed by a
set of continuous fluid elements remains
constant as the fluid elements move through
the flow:
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Lifting-line model of a finite-span wing

Flow past a wing 1s modeled by the superposition of the uniform free stream and the

velocity induced by a plane vortex sheet “pretending” to be the cortex wave behind the
wing. .

A b |

infinitesimal
horseshoe
vortex

y=b/2

y
I'(y) / dl’ = I''(y)dy
ﬁ/ S
/| 1

vortex sheet

()

y=-b/2

The vortex sheet behind the wing is “woven” from continuum of infinitesimally weak
horseshoe vortices. These vortices are “attached” to the lifting line leading to a continuous
distribution of circulation along the wing span.
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I Lift Distribution on a Finite Wing.
Consider a given spanwise location y,, where the local chord is c.
= The lift per unit span can vary along the span.
» Different spanwise locations can have different angles of
attack (geometric twist).
=  Wings can also have different airfoil section spanwise
(aerodynamic twist).

* Pressure equalization occurs aty = -b/2 and b/2, and
consequently there is no lift at these locations.

. L'=L'(y)= )
Front view / ) = Poolasl'(y)
of wing
¥
b b
g 2

* Objective is to estimate the lift distribution, total lift and induced drag for the finite wing.




1 PRANDTL'S LIFTING LINE THEORY

d Prandtl’s Lifting Line Theory

= The theory is useful for predicting the aerodynamic characteristics of finite wings
L

;

(] I

Free-trailing vortex
N

Replace finite
wing with
bound vortex

2o

Free-trailing vortex

Finite wing

Horseshoe vortex

The finite wing is replaced with a bound vortex.
= Due to Helmholtz’s theorem, a vortex filament cannot end in the fluid.

Therefore, assume the vortex filament continues as two free vortices trailing
downstream from the wing tips to infinity.

Bound vortex + Trailing vortices —> Horseshoe Vortex
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] The Vortex Filament Theorem:

e  Establish a rational aerodynamic theory for a finite wing.

. The curved filament induces a flow field in the surrounding
space.

Circulation taken about any closed path enclosing the
filament is constant.

. ] . Vortex filament
 Consider a segment dl. It induces a velocity of strength I’

at point, P, equal to:
' dl xr

av = 4 ‘r?"

dv

* dl-infinitesimal length along the vortex filament
* r—radius vector from dl to some point in space, P. e BlOt-Savart La w

e dV -infinitesimal induced velocity
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] The Vortex Filament Theorem:

 When a number of vortex filaments are used in conjunction with a uniform free stream, it
is possible to synthesize the flow over a finite wing.

* Velocity induced at P by the entire vortex
filament is given by:

dv-:rdlxr:v»:‘.‘rdlxl’
A7 |r3| Y Arx |r3|
v - r j-sméi-dl
4 r
r = _h - | = h - dl =— _h2 do
sin @ tan @ sin“ @
] h
~SIN @ -[— do
v oL [ sin® @ ]
47Z'0 ( h 2
sin @
=—Ljsim9d¢9:L
47zh0 2

7h . The result is the same as that for a point vortex in a 2D flow.




2 3D VorTEX FILAMENT ¥S. 2D VoRTEX FlOWS

J 3D VORTEX FILAMENT
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d Prandtl’s Lifting Line Theory

Y

Vortex filament
of strength I'

y
% Free-trailing vortex
_b - —
—_—y= —2' \
dl xF
Replace finite i
wir?g with ; |r |
* Biot-Savart Law
dVv

bound vortex

[(STIS

Free-trailing vortex

— YR )
Horseshoe vortex

Finite wing

Trailing vortex

W) == 4%(% + y)_ 4%(% — y)

The Biot-Savart law allows us to determine the downwash along the wing and results in:
I

(F113

or

T b
w(y) = _47r (%)2 j y2

Trailing vortex

However, the single vortex filament case is not sufficient to describe the physical conditions

on the wing since the downwash at the wing tips is infinite!




1 PRANDTL'S LIFTING LINE THEORY

= Instead of representing the wing by a single horseshoe vortex, superimpose using
a large number of horseshoe vortices.

= Each horseshoe with a different length of the bound vortex.

= A/l bound vortices coincident along a single line - Lifting Line.
= The series of trailing vortices represents pairs of vortices.

= Each pair is associated with a given horseshoe vortex.

= The strength of each trailing vortex is equal to the change in circulation along the
lifting line.
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O PRANDTL'S LIFTING LINE THEORY
d Prandtl’s Lifting Line Theory

= Let’s extrapolate to the case where an infinite number of horseshoe vortices
are superimposed along the lifting line.

= Each horseshoe has vanishingly small strength.

= The finite number of trailing vortices in the earlier case have become a
continuous vortex sheet.

= The total strength of the sheet integrated across the span of the wing is zero
(because of pairs of trailing vortices of equal but opposite strengths).




1 PRANDTL'S LIFTING LINE THEORY

e The wing is replaced by a bound vortex with (continuously)
varying circulation Iy)

Vortex filament
of strength I

e The trailing vortices create a ‘vortex wake’ in the form of a
continuous vortex sheet .

.pe oye . . * Biot-Savart Law
o Local strength of the trailing vortex at position y is given by

the change in Iy): dIl"= (dI/dy) dy
o the vortex sheet is assumed to remain flat (no deformation)

e Validity: good approximation for straight, slender wings at
moderate lift

B (dI"/ dy)-dy
477(yo -Y)




1 PRANDTL'S LIFTING LINE THEORY

d Strength of the trailing vortex at position, y, along the wingspan:
e Take a small segment of the lifting line,

dy, at position y. dw — — (2 F(/ dy)-d)y
. : : \ (Yo~ Y
e The change in circulation of b L, .
N )
the lifting line over the 1 % 3 i
segment is: 5 : dw L/\; - -
_ / l Vo ~ 5
d.l-'_ (dr/dy)dy- // . /d‘;,// ) /?\\T\' f‘]r
e Thisis equal to the strength il o -
ope e D / - —
of the trailing vortex. Y €
/ '\&\\w/ —
e The contribution dw to the induced | e
P —
velocity at position. jK &

 Total velocity at position yo induced by the entire wake

vortices will be:
AW — _Iblz (dI"/ dy) dy
~bi2 477(y0 ~Y)

b/2

W (yo) = [

b/2
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Proving Prandtl- With A Twist!

* A group of college aerospace engineering students in the 2012-2013 Aeronautics Academy at NASA's
Dryden Flight Research Center have proven German aerodynamicist Ludwig Prandtl’s theory on how to
overcome one of the thorny problems of flight.

What does flight mean to you?

NASA DFRC Aeronautics Academy 2013

R

o~

https://www.youtube.com/watch?v=Hr0l6wBFGpY&t=135s
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