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1 30 WinG AERODYNAMICS
d Prandtl’s Lifting Line Theory

Replace finite
wing with
bound vortex

)(- = - 2
Free-trailing vortex

_2 . - PN
b
’// w(y) =
(bzy ¥
Finite wing

= However, the single vortex filament case is not sufficient to describe the physical
conditions on the wing since the downwash at the wing tips is infinite, instead of zero!

Horseshoe vortex

%\@‘ //E?’_-iil?'\’\ x ) dW - — (dr / dy).dy
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O Fundamental equat:on for Prandtl Lifting Line Theory:

_ T'(yo) 1 o (dI'/dy)
a(Y,) = A c(Ye) +a_o(Yo) + AV, _[_b (Yo—Y) dy




1 PRANDTL'S LIFTING LINE THEORY

O Fundamental equation for Prandtl’s Lifting Line Theory can be expressed as:
-1 ez (dI7/d
a(yo): ) a _ o(yo) b/2( y)d
al c(yo) A7V, o2 (y, - y)

= Once I{y,) is known:
=pV.I(y)

1. Liftdistribution: L'(y)

b/2

“Ts b[f(y) dy

b/2 b/2

2. Totallift: L= fDdy:me fF (y)dy |C, = .

—b/2 —b/2

1" (dF/dy)
3. Induced angle of attack: | (V) =——— /

v, 7, (v y)

o —b/2 0

b/2 b/2 b/2

4. Induceddrag: p — /Di 'dy = ﬁ,’ai dy =pV., /F (y) a;(y)dy

—b/2 —b/2 —b/2

b/2

D
C, = A d
b =% ngé(y)a(y)y




1  PRANDTL'S LIFTING LINE THEORY

J Consider a case with elliptical lift distribution
* Considerthe following “elliptical” lift distribution: |

Iy) =11 —(b% ’

* Compute the downwash velocity from:
1 Fdr/d

4 I —

T 52V Y

w(y) =-

I
* Induced downwash W( y) —___0

velocity: 2b
L _ G _G
* Induced AOA: " 20V, m(b’/S) mAR
) L 7Tplp
* Lift coefficient L:,OVOOFO—” = C = > T LN
4 0.50V,°S  2V,35 * The Supermarine Spitfire




1 PRANDTL'S LIFTING LINE THEORY

The elliptical lift distribution - summary

............... |
C, Q‘
e (Constantdownwash along the span: |&, = ‘
7TAR i
C’ |
e Induceddrag: |C, =a,C, =~
* 7TAR
dC a
e Liftslope: a=""1 — L /
daa 1+a,/ AR //

e Effect of increasing the wing aspect ratio: - induced drag smaller
- lift-slope larger (a — ay)

* Practical significance of the elliptical wing:
— Optimum wing shape: minimal induced drag for given lift
— Reference wing: reasonable approximation for real wings




1 PRANDTL'S LIFTING LINE THEORY

d Consider the case with elliptical lift distribution el

~ 7 \ y

. y:%cosé’, dy:_gsingdg Q,,;// ;

| Y g, iptic win
r( V) =T I.I | — Q When combined, Eq. (5.28) becomes V «\-’\é;/ L )/t, Elliptic wing

‘ ’ \l I'(»)=1,V1—cos*8@ — ! L/%\; — X

O / '/, \\'4
'(@)=T,siné ;
t//

L Consider the case with a general lift distribution

r(e)zzbvmiﬁsin(nﬁ); n=1.N &\ __,)

N s o
dF dI" d@ _ vaooz nA cos(n@)d—g Elliptic Wing
dy ~do dy 1 dy
W Fundamental equation for Prandtl’s Lifting Line Theory:
r(y,) 1 bz (dT/ dy) Rectangular Wing
a(y,) = - +a_o(Yo) + I dy
V.,.C(Y,) 47V, 7012 (Yo = Y) ///T\\
N L . XA cos(n0) L j “
= a(6,) = (0 )ZAnsm(ne )+, (6, )+;j0 T do __\“‘L/// i
_ 2 E sin(né, ) Tapered Wing
= a(6,) = @) le A sin(nd,) +a__, (6, )+Z nA, ———22 o




1 PRANDTL'S LIFTING LINE THEORY

L Consider the case with a general lift distribution N

F(Q):vawiﬁhsin(né’); n=1...N __,___‘,)

Elliptic Wing
Y : N sin(né,)
a(6,) = 7c(6,) ;Ah Sln(n90)+aL:o(00)+;nA1 sin 6,
Rectangular Wing
 Lift coefficient of the general wing: e ——
L sk
C — — - I d \\“-‘-“ I
o b2 op2 N, % i}
= ['(y)dyI'(@) =— ) A, |sin(nd)sin6déa
VooS k')“IZ S ; E[
f 7l2 forn=1
"+ |sin(n@)sin 8do = —
j (2 {0 forn=1 CL_'A‘j_ﬂ-AR
2
~C, = 2;’ AT _ A 7AR




1 PRANDTL'S LIFTING LINE THEORY

 Consider the case with a general lift distribution <

Q)= 2bvwi A sin(nd); n=1..N

rectangular wing

N 0,
a(0,) = —2— ( ZA]sm(n0)+aLo(<9)+z Aqs'sr:ﬁng)

O Induced drag coefficient of the general wing:

trapezoidal wing

2 +b/2 2b2 zz[ N ) ) 2
Co. L(y)e, (y)dy =— Ajsm(ne)jai(e)sm@de N
V.8 bf, S I - Cp, =7AR-A’ 1+Zn(%j
N 1 "dr(y)/dy 1 N % cos(nd) sinné, =
a'(g)_4 V. 5[,2 Y, —Y dy_ﬂ'n_l !cose c0s 6, a6 = z_; " sing. sin 6,

2
N
: I .
= j[ A]ﬂn(nﬁ)j(ZA‘Sln(ng)Jdg By dennlng . 5 - 4 n( Al] as the |ndUCEd drag faCtor

. 0 form=n = Cp,; =7AR-A?[1+6]
- [sin(mo)sin(ng)do = { 7 ,

0 2 form=n CL=A17Z-AR:>CDJ=7[L

_ 2 (Y ;
(le j ) ﬁAR[“Z;nA” ] By defining: e= as the spaneffciency factor
1+ 9)
= AR(A12+ZnA] j 7AR-A? 1+Zn[ij C.2
" A = CDi = -
" meAR




1 PRANDTL'S LIFTING LINE THEORY

J Consider the case with a general lift distribution

General lift distribution: summary and conclusions

Lo el
C, = A7 AR | Cp=mdR) nd,=mR 4 |1+ n\A”)
n=1 n=2 1 —

NP

C C 2 (1 5) b 5o Z (A ]2 50 Elliptic Wing
+ WNere nl—| 2
" " 4R 4

61 Rectangular Wing
L

or: Cp =—=— where e= <1 the"span efficiency factor"
" medR (14 0) o
Conclusion: = 2

o The elliptic wing (0= 0, e = 1) gives the lowest possible il
induced drag (for given lift and aspect ratio).




1 PRANDTL'S LIFTING LINE THEORY

Why aren't all wings designed to be elliptic?

1. At high angles of attack a wing with uniform cross section along the span and
no twist will stall simultaneously all along the span causing sudden loss of aileron
control. Increased chord at the wing tips helps maintain control authority.

2. Stall near the wing root is preferred and the wing can be twisted to reduce
the angle of attack near the tips. This is called washout.

3. The induced drag penalty is relatively small even for relatively large
deviations from an elliptical shape.

4. The compound curves involved in constructing an elliptic wing increase cost
and complexity of manufacture.




1 PRANDTL'S LIFTING LINE THEORY

d Consider the case with a general lift distribution

Effect of wing planform and aspect ratio

C.’
C, =—Lt-(~10+0
i 7Z'A( )

d,

a—

1+ (a,/ )1+ 0)

e Values of o depend on planform and aspect ratio of the wing

0.16

0.08

0.04

 Effect of wing planform on o for a

tapered wing

Taper ratio, ¢, /c,

0.2 T 0.4 0.6 0.8 1.0

tipchord _ Gy

Taper Ratio A =

root chord  Cy

Tapered wing

A tapered wing with taper ratio
c/c,= 0.3 is almost as good as

an elliptical wing!




1 PRANDTL'S LIFTING LINE THEORY

1
* Span efficient factor: e

C T (+6) c

tisk of
tip stall

L’ L’ paneffciency factor
4 e=10.952 4 e=0.990
{7 S ——

,hM0=0.113Lb ,\M0:0.107Lb

-~/ -/
I (-
I |
| A= 1.0 | =05 |
I |
| [

. Load distributions, root bending moment, and span efficiency for three taper ratios.
All three cases have AR= 10, and no wing twist.




1 PRANDTL'S LIFTING LINE THEORY

Fuselage
Tip Chord | (c) (c) RootChord

tip chord _ C

Taper Ratio A = ————
A p root chord  Cy

A =0

Elliptical lift distribution

root semispan

* The typical effect of taper ratio on the lift distribution

a. Rectangle (A =1)

=

b. Trapezoid (<< | (straight tapered)

N

¢, Trangle (delta) =0

e Wings with various taper ratio




1 PRANDTL'S LIFTING LINE THEORY

J Consider the case with a general lift distribution

Final conclusions
the effect of wing planform on the induced drag

C,’
7AR

Cp, = (1+0)

e |n order to reduce the induced drag it is more important to
increase the aspect ratio AR than trying to approach the elliptic
lift distribution accurately

e A tapered wing with taper ratio of c./c, = 0.3 is almost as good
as an elliptical wing and is much easier to manufacture

e Note that the induced drag factor O is a constant (i.e.,
independent of ) only for a wing without twist!

e Remember: total drag = induced drag + profile drag (~ viscosity)




1 PRANDTL'S LIFTING LINE THEORY

 Consider the case with elliptical lift distribution o4 et P
A // N y
; y=£c056’, dy = —ésiné’dé’ Q,ﬁ// :
|I 2 \? 3’/ Q,) Elliptic wing
r( V) =T 1- _.v When combined, Eq. (5;28) becomes " ‘z',\“; T ) )
) Y I'(»p=1_+vl—cos* & i L
’ / L5t
. to 2
['(@)=I,sin@ ,

L Consider the case with a general lift distribution

Q)= 2bvwi A sin(nd); n=1..N &“_)

Elliptic Wing

o (6,) = anh sin(ng,)

— sin 6,

Rectangular Wing

C, = AZAR E/T\\J

2
CD,i =77 AR- A12 1+ Z n (%] Tapered Wing




2 Fourier Sine Series to represent Rectangular & Triangle functions

4 (<)
_.l F 3 l—
—_— o T 2 =
= .o}
(@) The given function fix) (Periodic square wave)
ﬁ‘ /_{’Sl
P

(5) The first three partial sums of the corresponding Fourier series

S20(x)

L]

T(x)
e x

1
—= 3 = = U
= b z

FIGURE 7.1 -8 The graph of Eq. (7.1—-20) for N = 5, 10, 20.

* It was found that only 4 terms were needed to get about 95% of the total energy to represent the

wakes behind a turbine stator

* The approximation functions are generally good representations of the actual functions if the actual

function is smooth.

* Fortunately, wing circulation distributions are usually quite smooth and require relatively few terms.




1 PRANDTL'S LIFTING LINE THEORY

J Consider the case with a general lift distribution

The relation between the A, and the wing geometry

Solve Prandtl’s wing equation: o _ 2 _ a-a, ,—«a,
a, aJ.c ) 3
 substitute: N sin n@
[(6)=2bV, > A,sinnb a(0) = Zn P

1 Sin

4b sinn @

ZA sinnd +Z nA = a—-a,
a,c - sin &

Numerical solution method:

» Take a truncated series with N unknown coefficients: A;, A>,... AN

» Take N different spanwise locations on the wing where the equation is to be
satisfied: 6;, 0,,.. Oy; (but not at the tips, so: 0 < 6, < n)

» System of N equations with N unknowns (Solve N x N matix)

* Note: itis not possible to solve for only one coefficient, as for the thin airfoil
theory of 2D airfoils.




1 PRANDTL'S LIFTING LINE THEORY

J Consider the case with a general lift distribution
Numerical example of the wing equation (1)

» Consider: rectangular wing: c¢ = constant; span=5b; b/c =AR;
without twist: o = constant, oag_=0
» Evaluate the wing equation at the N control points at 6;:
N (44 n )
Z( + A, sinnb, = o i=1,2,...N

—~\ a, sin@, )

e Thewing is symmetrical — A5, A,,... are zero

sin@, = sin(7x —6,)

A,sinnb, = A,sinn(x—6,)

If niseven:

A sinn@, = A sin(nrt—nb,)=—A,sinn 6, /2 T
A, =0 for nis even number
If nis odd:

A,sinn@.= A, sin(nzt—nb,)=A,sin(x —nb,)= A,sinn0b,
A, # 0 for nis odd number




1 PRANDTL'S LIFTING LINE THEORY

J Consider the case with a general lift distribution

Numerical example of the wing equation (2)

» FEvaluatethe wing equation at the N control points at 6;:

(2407 VY inng -
nlka 31n9) sin 7 - ¢ i=1,2,...N

e The wing is symmetrical — A, A, ... are zero
— takeonly A,;, As, ... as unknowns
— take only control points on half of the wing: 0 < 6, < /2

e FExample for N=3:

— take A,;, A;, Asas unknowns
— take control points (equidistantin 6): 6, = /6, 6> = /3, O; = /2
— take lift-slope of the airfoils a, = 27, and wing aspect ratio AR = 2

i =1 i =2 i =3

0] /6 21/6 /2 471t/6 51/6 T




1 PRANDTL'S LIFTING LINE THEORY

J Consider the case with a general lift distribution

Numerical example of the wing equation (3)

i(4A WA sinn 6, = i=12,...N
=\ a, sm0 )"

* A=AR in the equation

— =1, 6,= /6,
(4A ! )A sm(:r/6)+’/4A 3 WA sin(3 72'/6)+(4A > )A sSin(57/6)=«c
A 5111(7:/6)) \a, sin(7z/6)) \a, sin(7z/6))
— 1—2 92 72/3
(44, 1 14151n(;r/3)+|(4‘4 3 7A3sin(37r/3)+(4‘4+ . )Assin(S 7/3) =«
\a, sin(7z/3)) \a, sin(7z/3)) \a, sin(7z/3))
— 1—3 93 72
+ Asin(/2)+ + A,;sin(37/2)+ + Asin(S57/2)=a
(44 1 ]1( )(4,4 3 )3( )(4,4 5 ]5( )

\a, sin(z/2)) \a, sin(z/2)) \a, sin(z/2))




1 PRANDTL'S LIFTING LINE THEORY

J Consider the case with a general lift distribution
Numerical example of the wing equation (3)

4A
( \A sinnf, = « i=12,..N
“~ 1k a, sm6’)
— =1, 6,= /6, * A=AR in the equation

(4+2)4,(0.5)+ (@ +6)4,(1) + (4 +10)4:(0.5) =«

34, +104; +74s =«

_ =2, 6,= /3,

NEl 2
[4+ J}A 2+[4+3(\/§)}4 (0)+(4+5(\/§)WA (—0.866) = &

4.464A4, —8.464A4; =
— =3, 0;,= w2
@+1)4,-@+34, +@+5MU4, =

54, —7A4,+94, =«




1 PRANDTL'S LIFTING LINE THEORY

J Consider the case with a general lift distribution
Numerical example: the rectangular wing (N=3)

e The set of equations becomes: with solution:
( 3 10 7 A, 1 ( A) ( 0.23 16}
4464 0 —-8464| 4, | =a]|l — A; |=a] 0.0277
s -7 9 4, I (4.} L0.0040)

e Evaluation of the properties of the rectangular wing (with AR = a, = 2n):

dC N=3 N=20

r = 0176  (0.166)

§=Zn(j’“\| >0 @ —> O — 0.044  (0.051)
= \A) e = 0.957 (0.951)

e Note: with 6~ 0.05: only 5% more induced drag than elliptical wing!




1 PRANDTL'S LIFTING LINE THEORY

 Consider the case with a general lift distribution
Sample Problem: Effect of Aspect Ratio Results

A=10 =
CL=7D4A1~7&46¥ M‘A_z —
+ A = 6 0ot —
L« Lift coefficient A=2 aﬂ*A

* Induced drag
coefficient

6
1

F
e A=AR

2 N
CD_:C—L(1+5) where 5=Zn(A”\ > ()
I M n=2 kAlj




1 PRANDTL'S LIFTING LINE THEORY

A numerical nonlinear lifting-line method
Given the wing shape and the angle of attack o
1. Divide the wing in spanwise positions. Yy,

2. Assume an initial circulation distribution
I,=17,), e.g. elliptical

3. Calculate the induced angle of attack:

1% (dl_'/dy) (evaluate the integral
v, 5, (v, J’) numerically)

@)—4
iterate until
4. Calculate: 5 (y,) =a—0;(y,) convergence

(under relaxation

5. Calculate lift coefficient: ¢,(y,) =c¢, (&, (v,)

6. Update circulation: Iy, )= Vwcz(yn) /()




J PRANDTL'S LIFTING LINE THEORY

3D Wing theory - a summary

o Lifting-line theory:

— Thewingis replaced by a bound vortex at the 1/4-chord line of the wing with
varying circulation I'{y): the lifting line
— The trailing vortices form a flat sheet of distributed vorticity: the vortex wake

* Limitations of the classical theory:

— slenderwings (large aspect ratio, or: span>>chord)
— straight wings (no wing sweep)
— moderate aerodynamic loading (no deformation of the vortex wake)

— linearrelation ¢; ~ o

» Extensions:

Chapter 5.4 — Anderson Textbook: non-linear lifting-line theory: C; ( Uefr )

Chapter 5.5 — Anderson Textbook: methods where the wing is represented by a
vortex-sheet (instead of a line): lifting-surface / vortex-lattice methods




Q Wingtiex of B187

HOW WINGLETS WORK

Winglets reduce drag by altering the flow of the vortices created by the wing. Wlth out Wlng |et Wlth WI nglet
They also increase the area of the wing which creates lift.

[ WITH WINGLETS

no wingtip device winglet

- ( 2 ., E { o S wingtip fence
5% 500,000 5% : Q :)

Savings in Gallons of fuel saved CO2 emissions
fuel burned. per airline per year. reduced.

drooped wingtip sharklet raked wingtip
SOURCE: Boeing BUSINESS INSIDER Q Q i :

Why the Wings of Boeing 787 are curved?

a(..

Boe:rg787 and 737 MAX in flight
o
4‘*‘5: '3




3 30 WiNG THEORY

 Prandtl’s Lifting Line Theory: AT (T dy)edy
%\\ - pILT // i — - : ;\$? = 47Z'(y0 - y)
CYTTT T/, = S V)
N = = (yO) J.—b jb47[(y y)
= Vo)) r(y,) 1 bz (dT/ dy)
e jaYo) = e (Vo) | Sy
T gyt e L)

e A disadvantage of the lifting line theory is that all of the
action associated with the bound vortex occurs at the
quarter chord point, such that only the lift and drag
coefficients are computed but not the moment coefficient.

e Unfortunately, the moment coefficient is essential to the

performance calculations.

e An answer is found in the vortex lattice method which

not only provides the pressure distribution but also

anchors the results to the actual geometry rather than
implicitly through the a,_,. This is essential not only for

calculating moments but for many practical wing

planforms like delta wings.

Tailed Delta

Tailless Delta

AYAYS

Cropped Delta  Compound Delta

Cranked Arrow Ogival Delta Lambda Wing Diamond Wing




2 3D WiNG THEORY

[ Prandtl’s Lifting Line Theory:  Vortex Lattice Method:

V.. Voo
\
— 1 71—
p— I ——
yix. v
F(y) Six. »v)
> S
< . - xX. ¥
wing v
Lifting
1 surface
‘—___-_ J—
b y -~ y ——]
— wake — 5.0
(streamwise N . Ll wake
vorticity)
Lifting line:
Lifting surface:

wing represented by a vortex filament
(only spanwise vorticity) wing represented by a vortex sheet with
distributed spanwise and chordwise vorticity

valid only for slender wings

k-

* F-22 Rapto




1 PRANDTL'S LIFTING LINE THEORY

Lifting-surface theory - numerical implementation

3D vortex-panel methods:

— the wing is represented by panels with distributed vorticity
(three-dimensional extension of the vortex-panel method in section 4.9)

 Vortex-Lattice methods:

— distributed vorticity is concentrated into a lattice of horseshoe vortices

* Asingle horseshoe vortex * The vortex-lattice system on a finite wing




3 30 WiNG THEORY

J Vortex Lattice Method:

Essential ideas:
e Panel the wing with discrete spanwise, y, and

streamwise, d , distribution of vorticies.

e Seta “control point” somewhere on this panel to apply the
flow tangency condition.

o Biot-Savart to determime the induced velocity from all
points.

e Solution of a system of equations determines the discrete
vorticity distributions via the downwash equation:

5 fa-gf e -y
_41 I (y_?)é‘n(fﬂ? ; dfdﬂ
70 [x-f + -

W(x,y) ==




3 3D WING THEORY

w/2

Ri2

Problem we would
like to treat

-i/2

Problem we
actually treat

' Trefftz plane intersecting the flat, straight vortex sheet from a wing




3 30 WiNG THEORY

J 3D Panel Method:

Basic Idea:

» Distribute sources, doublets or vortices
on the surface of a body.

* Apply the flow tangency condition.

* Solve for the unknown source, doublet
and vortex strengths.

This approach is widely used in the

Delta-Cp

industry for preliminary design gt
considerations and allows us to apply the I
surface tangency conditions to all points 026703

on the wing. A large code is written for
this purpose and generally takes a good
deal of effort to define the geometry and .
apply the method. I_m000

-13.65575 Mach: 0.600, Beta: 0.00000000, Alpha: -10.000
Vehicle CG: 10162910, -0.000502, 0.962707

-0.48865




1 PRANDTL'S LIFTING LINE THEORY
J Example #1

= For a finite wing with an aspect ratio of 8.0 and taper ration of 0.8. The airfoil section is
thin and symmetrical.

= Please calculate the lift and induced drag coefficient for the wing when it is at an
angle of attack a=5.0°

Fuselage

-

Tip Chord [ct} {l:r] Root Chord

tip chord _ C;

Taper Ratio A =

root chord Cr




1 PRANDTL'S LIFTING LINE THEORY

J Example #1 016
C z 0.12
C, = ij(l +0) 5

0.08

0.04_
a
a= -

1 + (ao / MR)(I + 5) 0 0.2 0.4 0.6 0.8 1.0
Taper ratio. ¢, /c,
- b = — 4.97 rad—!

= e eI ARCL 5 ) 1 2a(1.055)/Bx

— 0.0867 degree ™’

- e (@]
Since the airfoil is symmetric, dXr=0 = 0% Thus,

C; = aa = (0.0867 degree " 1(5°) =| 0.4335

From Equation (5.61),

C?2 (0.4335)2(1 + 0.055)
o TAR 87T

0.00789




1 PRANDTL'S LIFTING LINE THEORY
J Example #2

= Consider a rectangular wing with an aspect ratio of 6, an induced
drag factor 6 = 0.055, and a zero-lift angle of attack of -2°. At an
angle of attack of 3.4°, the induced drag coefficient for this wing is
0.01.
= Calculate the induced drag coefficient for a similar wing (a
rectangular wing with the same airfoil section) at the same
angle of attack, but with an aspect ratio of 10.
= Assume that the induced factors for drag and the lift slope, 6
and t, respectively, are equal to each other (i.e., 6 =t ). Also,
for AR =10, 6 =0.105.




1 PRANDTL'S LIFTING LINE THEORY

J Solution

We must recall that although the angle of attack is the same for the two cases compared here
(AR = 6 and 10), the value of (U is different because of the aspect-ratio effect on the lift slope.

First, let us calculate ('} for the wing with aspect ratio 6. |

<2
Cpi= fﬁ(l + 4)

2 _ wARCp; _ =(6)(0.01)
CL o 1+r5D - 140055 0.1787

Hence, Cr =0.423

The lift slope of this wing is therefore

d(% — 3_4;0'4(232;) = 0.078/ degree = 4.485/rad

(00N S VN )N Y2 S g A conyriaht © by Dr. Hui Hu @ lowa State University. All Rights Reserved! Gel“"“‘e Sy




1 PRANDTL'S LIFTING LINE THEORY

J Solution

The lift slope for the airfoil (the infinite wing) can be obtained from Equation

i)

a = 1+(ap/mAR)(1+T)

dCp a = ag

da 7 1+(ag/mAR)(1+T)
4.485 = 2

1+[(1. 055).:10 7(6)] — 1+0.056ag

Solving for ag, we find that this yields ag = 5.989/rad. Since the second wing (withAR =10) has

the same airfoil section, then a( is the same. The lift slope of the second

wing is given by

aq

_ 5.989 _
1+(ap/mAR)(1+71)  1+[(5. 9891]3 1.105) /7 (10)] = 4. 95/?"{1d

1 =
= 0.086/ degree
The lift coefficient for the second wing is therefore

CL=a(a—ap—) = 0.086[3.4° — (—2°)] = 0.464




1 PRANDTL'S LIFTING LINE THEORY

J Solution

In turn, the induced drag coefficient is

2 2 Y
Cpi = (1 +6) = B2 — 0.0076

Note: This problem would have been more straightforward if the lift coefficients had been
stipulated to be the same between the two wings rather than the angle of attack. Then
Equation (5.61) would have yielded the induced drag coefficient directly. A purpose of this
example is to reinforce the rationale behind Equation (5.65), which readily allows the scaling of
drag coefficients from one aspect ratio to another, as long as the lift coefficient is the same.
This allows the scaled drag-coefficient data to be plotted versus C, (not the angle of attack) as
in Figure 5.22. However, in the present example where the angle of attack is the same between
both cases, the effect of aspect ratio on the lift slope must be explicitly considered, as we have

done above.

Cpy=Cpa + L (A}ﬁ - J,;]Rg) (5.65)
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Figure 5.22 Data of Figure 5.21 scaled by
Prandtl to an aspect ratio of 5.
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