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- BoundaryLlayer Flows

« The boundary layer is a very thin layer of air flowing over the surface of an object (like a wing).

« As air moves past the wing, the molecules right next to the wing stick to the surface. Each layer
of molecules in the boundary layer moves faster than the layer closer to the surface.

» At the outer edge of the boundary layer, the molecules move at the same velocity (free stream
velocity) as the molecules outside the boundary layer.

» Ludwig Prandtl revolutionized fluid dynamics when he introduced the boundary layer concept in

the early 1900s.
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- BoundaryLlayer Flows

Viscous effects are limited to small region (thickness~Jd’) around the surface.

Boundary layer thickness is defined at distance above the surface where velocity
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- BoundaryLlayer Flows

BOUNDARY LAYER THICKNESS:

O 1s y where u(x,y) =0.99 U _

L = L g Um Uw
pr—
S
»—*)
— >
e
/
/( ‘
Leading edge
- s

This definition for O is completely arbitrary,
why not 98%, 95%, etc.

Blasius showed theoretically that 6/x = 5/Re,
(Re, = pU_x/n)




- BoundaryLlayer Flows

» Displacement thickness, &

* Displacement thickness is the amount the streamlines outside the
boundary layer appear to be ‘displaced’.
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Because of the velocity deficit, U-u, within the bdy layer,
the mass flux through b-b is less than a-a. However if we
displace the plate a distance &*, the mass flux along each
section will be 1dentical.
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- BoundaryLlayer Flows

=  Momentum thickness, 6

Momentum thickness represent the momentum deficit caused by
the presence of the solid wall (boundary layer)
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1 BoundarylLayerFlows
" Example #1

=  Problem 01 : Calculate displacement and momentum thickness
for the local velocity profile given by the formula

u(y)=U,(1-e )
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- BoundaryLlayer Flows

" Example #1

= Problem 01 : Calculate displacement and momentum thickness
for the local velocity profile given by the formula

Solution:

0, —]I???J (1-1+e)dy =—Llim[e™ —e’]=1
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The shape factoris H =—=2
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1 NAWIER-STOKE EQuUATION FOR 2D Wiscous FLowsS

boundary layer thickness - &

Navier-Stokes equations v
X-momentum =r—N
Du dp ) = = ? °
4 + MV u 7 ; WALL
D t ax [agunar F;agr;; |||||| | ::;b lent

y-momentum

Y (mm)

These are 2D incompressible Navier-Stokes equations.

Continuity equation remains the same:

au av
0x ay

There are three equations with three unknowns (u, v, p).




1 NAWIER-STOKE EQuUATION FOR 2D Wiscous FLowsS

Conservation of momentum R

For Newtonian fluid S panaages
ou 0v A Ea
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1 Boundarylayer Equations

Boundary Layer Equations

* Boundary Layer concept was founded by Ludwig
Prandtl and it revolutionized the concept of
solving Navier Stokes questions.

* Boundary Layer Equations are partial differential
equations that apply inside the boundary layer.

*Ludwig Prandtl

Lee Cheuk Hin Jay




- BoundaryLlayer Flows

Non-dimensional variables

* Making the equations of motion non-dimensional helps to gauge
the importance of various terms.

* Use areference length, L and a reference velocity V/, to normalize
all the terms

* Let’s note the dimensional variables with superscript *

_ P~ P
LV, V™ v

U =

Then note:
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- BoundaryLlayer Flows

Non-dimensional form of viscous flow equations

* And for pressure gradient

*

op

ox* - ox*

e Dimensional x-momentum
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- BoundaryLlayer Flows

Non-dimensional form of viscous flow equations

boundary layer thickness - &

10 30 50 70 90 11.013.015017.0

Du ap+ 1 (azu+azu) =
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VP U
And similarly for y-momentum "
Dv dp 1 [(3%v 0d%v _ I
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And continuity
ou s v 0 "
ox 0Jy d
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- BoundaryLlayer Flows
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- BoundaryLlayer Flows

Simamaicn Il

velocity (m/s)

] Boundary Iayerflow over aflat plate ! 10 30 50 70 90 110130150170

* Consider a steady uniform flow
approaching the flat plate.

* Continuity equation

GA (W)-1 airfoil
incoming flow: 10 m/s

ou dv
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- BoundaryLlayer Flows

=  Conservation Of momentum
* For x-momentum
6u+ ou 6p+ 1 62u+62u
“ox v@— dx Re\dx* 0y?

* On the left-hand side, the ratios are O(1)
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- BoundaryLlayer Flows

= Conservation of momentum
* For y-momentum

[ streamwise
ov 4 ov ap 4 1 0217 4 0217 [ velocity(mis) 0 30 5..0 9.0 110170
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- BoundarylayerTheory

The Laminar Boundary Layer Equations — Derivation

* Rewriting the governing equations in terms of non-dimensional variables,

du” ﬁv
ax” ay
Jous o odut J\ d /u“
u = aydc - a Re}%%;Z a *2
y
1 Jv- 1 av 6p ‘vt 1 9%

Sc U +
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¢ As becomes large, terms with can be neglected, and the system reduces to the classical
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) BoundarylayerTheory

The Laminar Boundary Layer Equations — Other Forms

If we scale the variables by usual dimensions not involving the Reynolds number, i. e.

x“=x/L, y'=y/[L, p"=p/pe, W =u/Ve, V' =V/V,,, P'=D/peVii

Then the equations become (note re-emergence of the Reynolds number in the momentum equation)

ou” + v’

dx*  dy*

du"  _ou’ dp* 1 0%’
- TV — = — +

dx* dy* dx”  Repdy**

0

u*

The dimensional form of the equations is:




. Boundarylayer Theory

Boundary Layer Shear Stress

* The shear stressin 2D is:
_ 6u_+6v
T=U @ a
* Applying the same dimensional considerations, we can show that in the boundary 7 layer reduces to:

du

* Along the wall, the shear stress is: - N

| (6u)
Twly=0 = U v
V). -
y=0

* Interestingly, this expression can give a hint as to where separation of the boundary layer may occur. As the
shear stress changes sign past the separation point, a location where 7,, = 0 can provide an indication of a
potential point of separation.




. Boundarylayer Theory

The Laminar Boundary Layer Equations — Summary

«» Simplifications did not affect the continuity equation.

pressure can be obtained from the Bernoulli’s solution for the outer flow.

numerical solution.

* Limitations of the boundary layer equations

+ Valid only for large Reynolds numbers e, > 1000,

obtained for any K¢, it will not be valid for flows in the turbulent regime.

of the boundary layer or the flow past the separation point.
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¢ Pressure gradient in the y-direction is zero, thus pressure is a function of x only, p = p(x). As a result,

** With all second x derivatives vanished, the equations are now parabolic, which can simplify their

%+ Valid only for Reynolds numbers within the laminar regime, 72, < 10°. While a solution can be

** The boundary layer theory is valid only for attached boundary layers, and it cannot describe separation
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- BoundaryLlayer Flows

" Summary of boundary layer equations

du du dp 1 0%u

* X-momentum: | + p—= —_—— +
ox dy dx Redy? 25
ap e e
* y-momentum: — = () £
dy >
du N dv 0 : —
* Continuity: = ; - :
y ax ay 05 0 Ié“”‘?‘o‘“‘||115lll_‘_2|0|_.;ll2l5;‘lll3l0”’
X (mm)
* Boundary conditions: momentum thickness - 8
* No-slip at the wall Ue:
y=0=u=v=0
———
* Known far-field flow velocity = 7 - i
y _} cx} ﬁ u % 1 J'p % 0 llllllll in;ga:?:ar transitional turbulent i

region region region




. Boundarylayer Theory

Solving the Boundary Layer Equations

 With the boundary layer equations, we can solve viscous flow problems by:
1. Computing the pressure field dp/dx around the body using inviscid methods (e. g., potential flow).

2. Computing the viscous flow field near the walls using the boundary layer equations,

* For the boundary layer equations, the following boundary conditions must be satisfied:

u(x,0) =0 No-slip BC
v(x,0) =0

u(x,y) = Vp asy - } Freestream conditions

Q

For a flat plate, the inviscid flow is uniform, and thus g—i = 0. This simplifies the equations, as will be highlighted in the Elasius Solution.
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