Lecture #40: Turbulent Boundary Layer Flows

Dr. Hui HU

Department of Aerospace Engineering Iowa State University, 2251 Howe Hall, Ames, IA 50011-2271 Tel: 515-294-0094 / Email: <u>huhui@iastate.edu</u>

Turbulence and Turbulent Boundary Layer Flows

- Laminar flows are restricted to finite values of a critical parameter – Reynolds number, Grashof number, ...).
- Beyond those critical values, the laminar flow is not stable. A small perturbation is amplified and flow transitions into a different regime.
- This regime is dominated by fluctuating and disorderly motion called turbulence.

• Critical Reynolds number, ~ $1.5 \times 10^5 < Re_{critic} < 1.5 \times 10^6$

□ Laminar Boundary Layer Flow – Blasius Solution

ODE form of the BL equation :

$$2\frac{d^{3}f}{d\eta^{3}} + f\frac{d^{2}f}{d\eta^{2}} = 0 \text{ or } 2f''' + f \cdot f'' = 0$$

η	f	f'	f''
0.00	0.00000	0.00000	0.33200
0.20	0.00664	0.06641	0.33193
0.40	0.02656	0.13277	0.33142
0.60	0.05974	0.19894	0.33003
0.80	0.10611	0.26472	0.32735
1.00	0.16558	0.32980	0.32298
1.20	0.23796	0.39381	0.31657
1.40	0.32301	0.45631	0.30785
1.60	0.42037	0.51683	0.29666
1.80	0.52959	0.57486	0.28294
2.00	0.65013	0.62989	0.26676
2.20	0.78134	0.68147	0.24836
2.40	0.92249	0.72918	0.22810
2.60	1.07278	0.77269	0.20646
2.80	1.23132	0.81178	0.18400
3.00	1.39724	0.84634	0.16134
3.20	1.56963	0.87641	0.13909
3.40	1.74759	0.90211	0.11782
3.60	1.93029	0.92370	0.09802
3.80	2.11692	0.94151	0.08004
4.00	2.30676	0.95592	0.06414
4.20	2.49919	0.96736	0.05042
4.40	2.69365	0.97628	0.03887
4.60	2.88968	0.98309	0.02938
4.80	3.08689	0.98819	0.02177
5.00	3.28499	0.99194	0.01580
5.20	3.48373	0.99464	0.01124
5.40	3.68292	0.99655	0.00784
5.60	3.88244	0.99787	0.00535
5.80	4.08217	0.99876	0.00357
6.00	4.28206	0.99936	0.00233

boundary conditions: No slip $(u = 0 @y = 0) \Rightarrow f'(0) = 0$ No slip $(v = 0 @y = 0) \Rightarrow f(0) = 0$ Far field free stream $(u = V_{\infty} @y \to \infty) \Rightarrow f'(\infty) = 1$

- Blasius solution calculated using a spreadsheet
- ODEs integrated numerically using Euler Predictor-Corrector method

f"(0) = h(0) determined by trial and error ("shooting method") as 0.332.

□ Laminar Boundary Layer Flow – Blasius Solution

• BL approximation works very well, except very close to the leading edge where Re_x is small.

Turbulence and Turbulent Boundary Layer Flows

Turbulent flow

- The turbulent motion may be described by:
 - Fluctuations : velocity, pressure,...
 - velocity fluctuates in all three dimensions and in time
 - Eddies
 - Fluid packets of many sizes, larger ones break down into smaller ones. At the smallest size, eddies dissipate due to viscosity.
 - Random
 - Fluid properties have random variations but have a particular form. Each property has a specific continuous energy spectrum which drops off to zero at small eddy size region
 - Self-sustaining
 - Turbulent flow once triggered, can sustain itself and create new eddies replacing the one lost due to dissipation.
 - Mixing
 - Much stronger than laminar case (molecular diffusion). Eddies actively move in all directions and cause rapid mixing.

Mathematical model and solutions

- Navier-Stokes equations apply to turbulent flows as well.
- In general NS equations can be solved numerically to obtain the flow field.
- Due to wide range of 'scales' however, a very high-resolution grid is required. This makes solution impractical for majority of the flows.
- Alternatively, fluid velocity may be considered as the sum of a mean and a fluctuating part:

$$u(x, y, z, t) = \overline{u}(x, y, z, t) + u'(x, y, z, t)$$

The equations then are solved for the average field (\$\overline{u}\$, \$\overline{v}\$, \$\overline{w}\$), where the terms involving the fluctuating variables are modeled (turbulence modeling).

Boundary layer flow over flat plate

- 0 stable, laminar flow
- 1 unstable Tollmien-Schlichting waves
- 2 three-dimensional waves, Λ -vortices

3 vortex decay

- 4 formation of turbulent spots
- 5 turbulent flow

Some characteristics of turbulent boundary layer

- Flow outside the boundary layer is irrotational
- Flow inside the boundary layer is rotational ($\omega \neq 0$)
- Fluid particles deform and rotate in the laminar boundary layer. They become highly distorted in the turbulent region due to irregular nature of turbulence.
- The transition to turbulence occurs at $Re_{cr} \sim 2x10^5$ to $3x10^6$ depending on the roughness of the surface and upstream turbulence.
- The velocity gradient at the surface is higher in turbulent flow
- Wall shear stress is then higher in the turbulent flow.

Turbulent Boundary Layer Model

Comparison of laminar and turbulent velocity profile in the boundary layer

Velocity Profile in Turbulent Boundary Layer

• Power-Law Velocity Profile Models

Effect of pressure gradient on boundary layer flow

Fig. 15: BL velocity profiles under different pressure gradients $\frac{dp}{dx} = -\rho U \frac{dU}{dx}$ (source of figure [6]).

Flow separation

• Flow separation occurs when there is adverse pressure gradient $\left(\frac{dp}{dx}\right)$

Separation point: $\tau_w = 0 \Rightarrow \frac{\partial u}{\partial v} = 0$

- Separation can occur both in laminar and turbulent boundary layer.
- Laminar boundary layer is more readily to sperate at relatively small adverse pressure gradient.
- After turbulence transition, separated laminar boundary flow can reattach to the surface after separation, creating a separation bubble.

1.0

0.8

0.6

0.4

0.2

 $\frac{u}{U} = \left(\frac{y}{\delta}\right)^{\overline{7}}$ Turbulent

0.5

1.0

vall

Laminar

 $\tau_w = \mu$

20

- Flow separation over airfoil surfaces
- Flow separation occurs when there is adverse pressure gradient $\left(\frac{dp}{dx} > 0\right)$

Separation point:
$$\tau_w = 0 \Rightarrow \frac{\partial u}{\partial y} = 0$$

- Separation can occur both in laminar and turbulent boundary layer.
- Flow can re attach after separation, creating a separation bubble.

Flow Separation on an Airfoil

Conventional vs Laminar Airfoils

- Laminar flow airfoils are usually thinner than the conventional airfoil.
- The leading edge is more pointed and its upper and lower surfaces are nearly symmetrical.
- The major and most important difference between the two types of airfoil is this, the thickest part of a laminar wing occurs at 50% chord while in the conventional design the thickest part is at 25% chord.
- Drag is considerably reduced since the laminar airfoil takes less energy to slide through the air.
- Extensive laminar flow is usually only experienced over a very small range of angles-of-attack, on the order of 4 to 6 degrees.
- Once you break out of that optimal angle range, the drag increases by as much as 40% depending on the airfoil

FIGURE 2: Extent of laminar flow on some famous airfoils.

IOWA STATE UNIVERSITY Copyright © by Dr. Hui Hu @ Iowa Star

Engineering

AERODYNAMIC DRAGS

- **Skin friction drag**, D_f drag caused by skin friction.
- Pressure drag or form drag, D_p drag due to flow separation, which causes pressure differences between front and back of the wing.
- Induced drag, D_i drag due to lift force redirection caused by the induced flow or downwash.

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

pressure drag

0.1

0.2

 $c_{\rm D}$

1.0

 $\tau_w = \mu \frac{\partial U}{\partial y}$

 $\frac{u}{U} = \left(\frac{y}{\delta}\right)$

Laminar

Turbulent

0.5

 $\frac{u}{U}$

1.0

0.8

0.6

0.4

0.2

0

2/00

total drag

0.3

t/L

0.4

AERODYNAMICS DRAG

LAMINAR & TURBULENCE BOUNDARY LAYER OVER A BALL

AERODYNAMICS OF GOLF BALL

AERODYNAMICS OF PAINTBALL : LAMINAR AND TURBULENT FLOWS

Automobile aerodynamics

IOWA STATE UNIVERSITY <u>Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!</u>

Automobile aerodynamics

Vortex generator above a Mitsubishi rear window

Mercedes Boxfish

IOWA STATE UNIVERSITY Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

Passive Flow Control: Shark Skin

Shark Skin Structures for Drag Reduction

Shark Skin Inspired Engineering

