AerE310: Incompressible Aerodynamics

Homework Problem Set \#07:

Due: 5:00pm on Friday, 05/03/2024

Problem\#1:

A rectangular plate, whose streamwise dimension (or chord c) is 0.2 m and whose width (or span b) is 1.8 m , is mounted in a wind tunnel. The freestream velocity is $40 \mathrm{~m} / \mathrm{s}$. The density of the air is $1.2250 \mathrm{~kg} / \mathrm{m}^{3}$, and the absolute viscosity is $1.7894 * 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$.

- Graph the velocity profiles at $\mathrm{x}=0.0 \mathrm{~m}, \mathrm{x}=0.05 \mathrm{~m}, x=0.10 \mathrm{~m}$, and $x=0.20 \mathrm{~m}$.
- Calculate the chordwise distribution of the skin-friction coefficient and the displacement thickness.
- What is the drag coefficient for the plate?

TABLE 4.3 Flat Plate $(\beta=0)$ Flation for the Laminar Boundary Layer on a η	f	f^{\prime}	f^{\prime}
η	0.0000	0.0000	0.4696
0.0	0.0023	0.0470	0.4696
0.1	0.0094	0.0939	0.4693
0.2	0.0211	0.1408	0.4686
0.3	0.0375	0.1876	0.4673
0.4	0.0586	0.2342	0.4650
0.5	0.0844	0.2806	0.4617
0.6	0.1147	0.3265	0.4572
0.7	0.1497	0.3720	0.4512
0.8	0.1891	0.4167	0.4436
0.9	0.2330	0.4606	0.4344
1.0	0.3336	0.5452	0.4106
1.2	0.4507	0.6244	0.3797
1.4	0.5829	0.6967	0.3425
1.6	0.7288	0.7610	0.3005
1.8	0.8868	0.8167	0.2557
2.0	1.0549	0.8633	0.2106
2.2	1.2315	0.9010	0.1676
2.4	1.4148	0.9306	0.1286
2.6	1.6032	0.9529	0.0951
2.8	1.7955	0.9691	0.0677
3.0	1.9905	0.9804	0.0464
3.2	2.1874	0.9880	0.0305
3.4	2.2863	0.9907	0.0244
3.5	2.7838	0.9978	0.0069
4.0	3.2832	0.9994	0.0015
4.5			

Problem\#2:

The streamwise velocity component for a laminar boundary layer is sometimes assumed to be roughly approximated by the
linear relation

$$
u=\frac{y}{\delta} u_{e} \quad \delta=1.25 * 10^{-2} \sqrt{x}
$$ Assume that we are trying to approximate the flow of air at standard sea-level conditions past a flat plate where $u_{e}=2.337$ m / s.

- Calculate the streamwise distribution of the displacement thickness $\left(\delta^{*}\right)$, the velocity at the edge of the boundary layerlleft $\left(v_{e}\right)$, and the skin-friction coefficient C_{f}.
- Compare the values obtained assuming a linear velocity profile with the Blasius solutions.

Figure 4.7 Comparison of velocity profiles for a laminar boundary layer on a flat plate.

Problem\#3:

A small airplane flies at speed of $90 \mathrm{~m} / \mathrm{s}$ at 1000 m altitude. The airplane wing has rectangular shape with chord length of 1 m and span of 11 m . Assume boundary layer over the wing surface is fully laminar and model the wing airfoil as a flat plate.

- a) Estimate the boundary layer thickness at the trailing edge.
- b) Estimate the displacement thickness at the trailing edge.
- c) estimate the friction drag of the wing.

Problem\#4:

A well-hit golf ball (diameter $D=1.69 \mathrm{in}$., weight w=0.0992 lb) can travel at $U=200 \mathrm{ft} / \mathrm{s}$ as it leaves the tee. A well-hit table tennis ball (diameter $D=1.50 \mathrm{in}$., weight w= 0.00551 lb) can travel at $U=60$ ft / s as it leaves the paddle.

- Determine the drag on a standard golf ball, a smooth golf ball, and a table tennis ball for the conditions given.
- Also determine the deceleration of each ball for these conditions.

[^0]
[^0]: F I G URE 9.18 The effect of surface roughness on the drag coefficient of a sphere in the Reynolds number range for which the laminar boundary layer becomes turbulent (Ref. 4).

