AerE310 Class Notes; Chapter 2 Review of Vector Algebra

Chapter 2
Review of Vector Algebra

2.1 Definition of a Vector

Definition: A vector is a quantity that posses both magnitude and direction, and obeys the
parallelogram law of addition.

2.2 Vector Addition
C=A+B

2.3 Vector Subtraction
D=A-B

2.4 Properties of Vectors

If s and #are two scalars and A and B are two vectors, then:
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0A=0
+A=A
(-)A=-A

(s+t)A=sA+tA
s(A+B)=sA+sB
st(A) = s(tA) = t(sA)
Explanation: If sis scalar and A is vector, then S Ais defined to be the vector having magnitude s

times that of A and pointing in the same direction if s>0 and in the opposite
direction if s is negative.

2.5 Scalar Product (Dot Product)
AeB = ‘Aué‘cose

Where ‘A‘, ‘é‘ are the magnitude of the vectors A and B.

v

0 (0<@<r) is the angle between the vectors A and B when
they are arranged “tail to tail”.

J ‘é‘ cos@ is the projection of vector B to vector A.

e IfO=7x/2, A and B are orthogonal to each other, and AeB=0

e Commutative: AeB=BeA
Example:

Work done by a force F during an infinitesimal displacement S

v

2.6 Vector Product (Cross Product)
AxB = ‘Aué‘sin 08,

Where € is the unit vector normal to the plane

n

containing A and B . Direction is determined
according to the “right-hand” rule. 0< 0 <r

‘Ax I§‘ = Area of the parallelogram
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If the two vectors are parallel, thatis if @ =0 or 6 = 7, then AxB=0.

® Vector product is not commutative. i.e., AXB # Bx A. However, AxB=-BxA

Application example:

Moment about O: M o= RxF

T

2.7 Triple Product:
2.71 Scalar Triple Product:

Ae(BxC)=Ce(AxB)=Be(CxA)

is the volume of the parallelepiped formed by the

non-coplanar vectors A, B and C.

2.7.2 Vector Triple Product:
Ax(BxC)=(AeC)B—(AeB)C
=mB-nC
Where 7, n are scalar parameters.
e Ax(BxC)=(AxB)xC

Proof:
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(AxB)xC =-Cx(AxB)
=—[(C e B)A—(C  A)B]
=(CeAB-(CeB)A

Thus, vector (Ax é)xé is inside the plane of vectors A and B, while the vector
Ax (é X é) is inside the plane of vectors B and C.

Therefore: Ax(BxC) = (AxB)xC

2.8 Unit Vector

A vector whose magnitude is 1 is called a unit vector:

Where W is the magnitude of the vector A, and &, is a unit vector in the direction of A.

| >

A

€)=

>

29 Vector Differentiation
If A and B are differentiable vector , a, t are scalars, and U=A+B , then,
W _di, &
dt dt dt
d() _da; . dd
dt dt dt
2.10 Product Rules
A-A:Qﬂf
o 0 ifi=#]
6 eé = _
1 fi=
o 0 ifi=
6 x6|=
T fizj

Copyright© 2021 by Dr. Hui Hu of Iowa State University. All rights reserved
-6-




AerE310 Class Notes; Chapter 2 Review of Vector Algebra

2.11 Components of a Vector

In 3-D, a vector has 3 components. These 3 components are independent of each other. Consider

three vectors A , Band C . In component form, these vectors in general can be written as:

A=Ag +A%, + AL,
B=B¢ +B,6, +B,§,
C=C,6 +C,6,+C,6,

Based on the component form, the following relations can be established:

AeB=AB +AB, +AB,

& & &
xB=1A A A
B, B, By
Ay Ay 4
Ae(BxC)=|B; B, Bj
C; C G
& & &
Ax(BxC) = A A, A,

B,C,-B,C, B,C,—BC, BC,-B,C,

In addition to Cartesian system, Cylindrical and Spherical coordinate systems are also the coordinate

systems widely used. Their components forms are discussed next.
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2.111 Cartesian Coordinate System

. . . &R ~
Rectangular coordinate system X, Y, Z ¢ and the corresponding unit base vectors are I, J, K

Where A, =Aei; A =Aej; A =Aek.

In other words, A, Ay , A, are the components of vector A,

and there are the projections of A on X, Y, Z axes
respectively.

The position vector in Cartesian system is given as:

R=xi+yj+zk
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2.11.2 Cylindrical Coordinate System

Variables in cylindrical coordinate system are (I,6,2), and the corresponding unit base vectors are

Where:
A =Aeé; A, =Aeé,; A =Ae §,.

In other words, A, A,, A, are the components of Cylindrical coordinate system (;,6) 3)
vector A.

The position vector in Cartesian system is given as:

—

R=ré +12§¢,

2.11.3 Spherical Coordinate System

Variables in spherical coordinate system ate (R, 8, 9),

and the corresponding unit base vectors ate €y, €,, €

A=Az e +A €, +A €,

Where:
A =Aeé; A =Aeé,; A =Aeg,.

In other words, A, A,, A¢ are the components of

vector A.
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2.12 Relationship between Coordinate Systems

2121 General Transformation

(0,,9,,0;) are the general coordinates of a 3-D coordinate system.

q, = Q1(Xv Y, Z)

q, = qz(x, Y, Z)

g; = q3(X’ Y, Z)
2.12.2 General Inverse Transformation

X:X(q1’%7q3)
y= y(qliqZ’q3)
Z= Z(ql,q2,q3)

For example:

Transformation equations between the Cartesian coordinate and cylindrical coordinate system are:

r=x>+y’ (0<r <)
@ =arctan(y/x) (0<6<2x)
Z=1 (o< z <)

The inverse transformation equation will be:

X =rcosd
y=rsin 8
1=12
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2.13 Scale factors, Unit Vectors and their Derivatives

2131 Scale factors

Scale factor defines the relationship between coordinates and distance along coordinates.

2.13.2 General Coordinate System

A position vector R in Cartesian coordinate system is given by:

R=xi+yj+zk

Using the inverse transformation, in a general coordinate system, the position vector can also be
written as:

ﬁ = X(ql’qZ’q3) f"‘ y(ql’qZ’q3) i+ Z(ql’qZ’q3) kA

The variation of the position vector along the coordinate direction defines the following relations:

@ = hlél
aq&
ﬁ = hzéz
8({2
ﬁ = hsés
00,

Whete h;, h,, h; are the scale factors and €,,€,,€, are the unit vector in the q,,q,,q, direction,
respectively.
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2.14 Determination of Scale Factors and Derivatives of Unit
Vectors
2.14.1 Cartesian Coordinate System

In Cartesian coordinate system, unit vectors are:
I

@D D> ('D)
[N)

[ ||

> sy

3

A position vector R in Cartesian coordinate system is given by:

R=xi+yj+zk
Therefore:

aR hlAlzf = h =1
aql

GR h2A2=j = h,=1;
5%

R —h,é,=k = h,=1
o,

of _2oj _ok _,
8)2 8)(A 8XA
ot _9)_0dk_j
ot _aj_dk_,
0z 07 01
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2.14.2 Cylindrical Coordinate System

In cylindrical coordinate system, a point P in space is given

by a position vector R(r,8,z) with base (€, €,, €,).

According to the definitions of the scale factors:

(;—I? =h, é

2—2 =h, é,

g =h, €,

The position vector can also be expressed as: €0
R=xi+yj+zk o

With the relationship between the Cartesian coordinate

system and Cylindrical coordinate system as: Cylindrical system
X =rCcosd (R,6.2)
y=rsiné r>0 0<0<2r;, —w<Z<w.
1=27

Therefore:

R=rcos@i+rsind j+zk
tr - Direction:

8 = R_x; Y5 o5 +sing 0K
o or or or

h, =1
(h, &)e(h é)=(h)*=cos’O+sin*0=1 = A S
€, =cosé1+siné |

0 - Direction:
hgégzﬁzgf ayJ+a—k_—rsm49|+rc056’1+0k
o0 00 00 00
h, =r
h é)e(h &)=(h)? =r?@sin?0+cos’f) =r? =N v .
(9 9)'(9 9) (9) ( ) égz—Sin9I+C089j
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Z - Direction:
. & _R_Xp j+@kA=Of+0 j+1k
oL o7 oz oz

h, =1
(h; €,)e(h, éz):(hz)zzl2 = {AZ_A
e, =k
Summarize:
6, =cos@1+siné | h =1
é, =—sin 1 +cosé | ; h,=r
8, =k h, =1
Transformation relationship
I | [cos® —sing 06, é cos@® sin@ 01
J|=|sin@ cos® 08¢, ;or |6, |=|-sin@ cosd O] ]
K 0 0 1], 6 0 0 1|k
Derivatives of the unit vectors:
GO T
or or or
B g L g . O
o0 ° ' 90 " ' 00
A T
oz oz oz
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Example:

If R=R(t)=ré, +26, is the position vector of a particle in cylindrical coordinates, obtain

expression for velocity vector, V , and acceleration vector, @, at that point.

Since €, =€,(r,0,2), then, dé, = %, do+ ce %,
00 or 0z
Therefore de, = %%4- o€, $+ 08 %
dt 00 dt or dt oz dt
Similarly, ~ S%0 % 40 3, dr 36, dz
dt 60 dt or dt oz dt
déZ 08, d¢9 o€, dr 6é2%
dt 06 dt or dt oz dt
- dR dé dr, dz, _d§,
V=—=r +—€ +—€,+12
dt dt dt dt dt
0é, do 08, dr ae dz r dz . 0é, do 08, dr ae dz
=r(——+— —)+ +—€,+12 —+ —)
06 dt or dt oz dt t dt 06 dt or dt oz dt
A dH dr . dz,
re, —é +—8§,
dt dt dt
d6’ dr . dz
- d(ré —68 +—@
5.4V _ " gt
dt dt

dr . d0  dé,dg . d*0 d°’r, drdé d’z, dzdé,
—e,—+Ir— reg—2+—2er —zez
dt 7 dt dt dt dt dt dt dt  dt dt dt

dr d@ . de 08, do 06, dr 06, dz s d’e d°r
=——@,+r—(—2—+—L2—+—2 )+ —+——€ +

dt dt dt 00 dt or dt oz dt ? dt dt

dr 08, de 08, dr 08, dz) d z dz 08, de 08, dr 08, dz)
dt 06 dt or dt oz dt’ dt? % 00 dt or dt oz dt

dr do . dodo. . d% drA drdeA d?z .,
=——€, - Ir——@& +ré, —+—€& +——§€, +—¢,

dt dt dt dt dt dt dt dt dt

d’r do., drdH d?0,. d’z.
=[—-r(— ————4+r——J6, +—¢

[dt2 (dt) I +[2 dt dt dtz] 0 dt? 7t
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Scale factors and unit vectors in Spherical cootdinate system (R, ¢, 0)

OB =R&,
OA=Rsing 4 z
X =Rsin ¢cosé
X =rsin ¢sin &
Z=rcos¢g

h, =1

8, =sin pcosO i +sin psin & j+cose k

€, =C0spcosdi +cosgsin @ j—sin pk

h, =Rsin ¢

8, =—sin A1 +cosd |
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2.15 Vector Calculus

2.15.1 Del, the Vector Differential Operator:
0 . 0 . 0
) +8, +8,
hoa, “h,dq, ~hyaq,

Where &, é,, &, are three orthogonal unit vectors, N, h,, h; are the scale factors along the

V=6

coordinate axes Q, Q,, (-

2.15.2. Cartesian Coordinate System

void, ]i K2
oXx "oy oz
2.15.3. Cylindrical Coordinate System

0
—+
060

= |F
D>

V=ér£+é9 Zﬁ
or 0z
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2.16 Scalar and Vector Field to Describe Physical
Problems

Type of functions

e A scalar as a function of a scalar, for example: g = p(T)
e A vector as a function of a scalar, for example: R = R(t)
e A scalar as a function of a vector, for example: T =T (R)

e A vector as a function of a vector, for example: V =V (R)

General description: ¢ = #(R,t) and A=A(R,t)

Scalar field: A scalar quantity given as a function of coordinate space and time, 4 is called scalar
field.

p=p(xYy,z1) 1 T=T(x,Y,2,1)
_pRY Y TR

For examples:

Vector field: A vector quantity given as a function of coordinate space and time, 7 is called vector

field.
For examples: V =V (X, y,2,t) =V (R,t) and M = M (x,y,2,t) = M(R,1)

e In general, a field denotes a region throughout which a quantity is defined as a function of
location within the region and time.

e If the quantity is independent of time, the field is steady or stationary.

Copyright© 2021 by Dr. Hui Hu of Iowa State University. All rights reserved
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2.17 Gradient

Gradient is a vector generated by the differentiation of a scalar function

Let ¢ =¢(R) = $(0,,0,,;)

Since ¢ is a function of a vector R, there are infinite number of directions in which to take the
increment AR . The total change in ¢, d¢, would in general be different in different directions.

Spatial detivative of ¢ at a point is expressed as detivatives of ¢ in three independent directions.
Gradient of a scalar is a vector.

2171 Concept of Gradient

At any point, the gradient of a scalar function ¢ is equal in magnitude and direction to the greatest

derivative of ¢ with respect to distance at the point.
Rate of change of scalar ¢ along two paths are of special importance:

1. Path along which the scalar is constant. (Isolines)
2. Path along which the rate of change of the scalar is the maximum (gradient line)

2.17.2 General Coordinate System:

. O .0 G,
Vo=¢ ¢ +€, ¢ + &, ¢
h,oq, h,oq, h,0q;,

2.17.2 Cartesian Coordinate System:

IRL LN

I

OX oy oz
217.3 Cylindrical Coordinate System

Vo=2¢ %+é91%+é o¢

L or rog oz
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2.18 Concept of directional derivative

Consider the change of ¢ over the directed distance drR G, e, R—> R+AR ), find
dg = im [#(R + AR) - ¢(R)] = ?
AR—

From the total differential formula of the calculus, the first order differential in ¢ will be

dgp=— o¢ dg, + 9 —dqg, + o ——dq, + high Orders terms

&g,  oq, o,
N 1 o 1 og 1 8¢

d d d hd h,d hd
Tog, "o, o, hog thydg, 2 Ty og, o
L10py 1 0p 100
h, oq, h, oq, h; o,

Since dR =dS =ds, €, +ds, &, +ds, &,
1 1 1

Now introduce a vector [—%,—%,—%] denoted by V¢ in the curvilinear orthogonal
h, 6q, h, da, h, oq,

coordinate system with unit vector (€, €,.€;), then,

104 104 104
dg=[——-,—— ——"Je[ds,,ds,,ds
=l a0, o,y g, o o %]

=VpedR=VgpedS
Since dS =dS -€5 therefore, 3—? =Vgeé,

e Directional derivative of @¢(R) in any chosen direction is equal to the component of the

gradient vector in that direction.

d¢ _

J Vpeé, is a maximum when Vg@eg€, is a maximum. i.c., when V¢ and €, are in

dsS

the same direction. In other words, V@ is the direction of maximum changes of ¢ and
|V ¢| is the magnitude of the change.

e The greatest rate of change of ¢ with respect to coordinate space at a point take place in

the direction of V¢ and has the magnitude of the vector V.
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2.19 Divergence of a Vector Field

Definition: The divergence of a vector (Ve é) at a point is the net outflow (efflux) of the
vector field per unit volume enclosing the point.

V =V, é +V, &, +V, &,

(§1<3+(§2 o € 0O

“h oq, h,aq, h, oq,

V.V:(ii+e_2i+e_3 0
h oq, h, oq, h; oq,

Yo (V. € +V, €, +V, &)

Cartesian system:

7 55 48 "a & 2 ~
VeV=(1—+]—+k=—)e(iV, + |V, +kV
(6x J&y 82) (v, +1v, 2)

~ OV, +JV, +KY,) L a0V, + iV, +KY,) . AV, + 1V, +KV,)
=je +]e +ke

OX oy (/4
A - i .oV, ok . . OV, + ]V, +KV,) . a@V, + JV, +kV
:i-[\/xﬂ+iavx+Vyﬂ+j—y+%vz+k%]+jo (v, + 1V, Z)+k- (v, + 1V, )
OX OX OX oX  oX OX oy oz
v, v, av,
= +—+
OX oy oz
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Cyvlindrical system:

- o €&, 0 0
VeV =8 —+2%2 — 4+8 —)e(V. &6 +V, & +V &
(rar rag zaz)(vrr 6 ~o zz)
:ér.a(\/r € +V, &, +V, ez)+e_.a(v, e +V, €, +V, eZ)+éZoa(Vr é +V,¢é,+V, ¢)
or r 00 0z
Term].:ér ° a(\/r el’ +V6’ eH +VZ ez)
or
\V 3 \ 8 \V A
=8, o(a ~é +V, i +8 - €, WLVlga&Jré—Z 6, +V, aez)
or or or 0 or or
oV,
or
Term 2 :e_e. a(Vr er +V0 eH +Vz ez)
r 00
_Lo, N, é +V, 8, +8Vr €, +V6%+% é, +V, aez)
00 00 00 00 00 00
é oV, . . oV, . . oV, .
=Ceo(—-6 +VE, +—6,-V,E +—=8,)
r 00 00 00
V, 10V,
= — 4+ —
r r of
Term?):éz ° a(\/r el’ +V9 e@ +VZ ez)
0z
\V 3 V 08 \V 8
:éz.(a : ér Vr 6er +a : AH +V9 ee ‘ : Az +Vz aez)
0z 0 0z 0z 0z 0z
_ oV,
0z
Therefore,
- o €&, 0 0
VeV =8 —+%2 — 46 )e(V. & +V, 6 +V._ 6
(rar I’@H zaz)(vrr g ~o zz)
ov, V, 1oV, 0V,
= + L4+ = +

or r r o0 01
_ E[a(rvr) N ov, N orv,)
ror 00 01

]

In general form:

VeV — 1 [a(hzhavl) N o(h,h,V,) N o(h,h,V;)

]
hh,h, = o, oq, 00,
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2.20 Physical Meaning of Divergence of a Vector

The divergence of a vector at a point is the net outflow of the vector per unit volume enclosing the
point.

Consider vector A with component A, Ay, A, ata point in the vector field surround by an element

control volume V¥ with an element surface VS.

For simplicity, the element control volume with its
center having a vector and components A, Ay, A

Y
are oriented with edges parallel to x, y and z axes,
respectively.
| Ay
re . A, =S8y AyA: 1 v (Ar+ %=42) AyA:

Outflow of A thorough any side = component ( o F) Ay /'_ L ( 3 Ay

ra . . . A
of A in the direction normal to side x Area of the da,
side.

Net outflow of A in X-direction (Net outflow of 2

A from the X-direction)
OA, AX OA, AX oA, oA,
= +——)— (A, ———)]AYAZ = — AXAYyA7 = — AV
(A= ) (A — - AyAZ=— " AXAYAZ = —
Similarly, net outflow of A in Y-direction (Net outflow of A from the Y-direction)

oA oA
= —L AXAYyAz = —L AV
oy oy

net outflow of A in Z-direction (Net outflow of A from the Z-direction)

= AXAYA7 = ia AV
(574 (674

Therefore, the total net outflow of A at the point
oA, OA
— ( LI y
ox oy

oA
+ % YAXAYAZ = (aAX + O YAV
oz ox oy oz

total net outflow of A at the point in all direction

VeA=lim]| ]
AV—0 AV
oA, OA, OA,
= + +
ox oy oz
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2.21 Gauss Divergence Theorem

ﬁ BedA
Recall that: V e B = DivB = lim [4&>—]
AV-—0 AV
. = 1 5 % = = =
can be approximated as: Ve B = Nﬁ BedA or (VeB)AV = ﬁ B e dA for an element control
AS AS
volume.

Now consider a finite control volume W in space subdivided into many smaller elemental sub-
volumes.

Suppose Ve B for all the sub volume are evaluated and summed:
N q N L
Y (VeB)AY, =) ffBedA
i=1 i=1 AS
N

N
Jm, (7 B aV; = fm 3 4B+ A

volumeintegral by definition

N
VeB) dV = lim BedA
fesrav=tm 38

The flow of B through the common faces of adjacent volumes canceled because the inflow through
one face equals the outflow through the other.

Thus, if we now sum the net outflow of B of all the sub-volumes, only faces on the sutrface
enclosing the region will contribute to the summation.

State in integral form the above statement becomes:

N —_ — —_ —_
AI\!‘[EOZQB.dAng.dA

1

Thus, Gauss divergence theorem states:
ff(veB)dv={fBedA
V AS
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2.22 The Curl of a Vector Field

VxB=Curl B

Consider the first term

Vx(B, €)=Vx(B hVg)=Vx(B, hVa,)
Since Vx (¢ A) = Vpx (A)+ ¢V x A

Vx (B, €)=V(B, h)xVa, +(B, h)VxVa,
:V(B h,) xVaq,
[ 6, OB, hy) & (B h) & (B h)
oq, hz 6q2 hg o0,
&,x6 0(B,h) & x& 0B h)
hh,  aq, h s og,
&, 9B, h) & 0B )
_hzhl 20, hh oo,
:i{é (B, h) & o(B, h)
h,"h, dq, h, aaq,

]()

}

Similarly,

1 o(B, h,) & o(B, h,)
v, 2)_h2{h_1 8q, _h_a “ou, 1

Vx(B, é ):i é_l d(B, hz)_é_z (B, h,)
3 3 h, "h, dq, h, 0g,

}

Therefore,
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VXEZVX(Bl é1+82 é2+B3 ég)

= i{é_2 a(Bl hl) _é_3 a(B1 hl)
h "h,  dq, h, g,
, L& 0B, h) & OB, hy),
hz h1 oq, hs 00,
e d(B, h,) €& (B, h)

1
+ {22222 27}
h, "h,  oq, h o,

}

Or
hlAl h2é2 h3é3
vxg._ L |2 o @
hhhy| o, oa, g,
hl Bl h2 BZ h2 BZ
2.23 Some Relations Involving the Vector Operator \

& 0 6 0 & 0 -
+ +—= —— is a vector operator and not a vector. Thus, it is necessary to

“hog, h,dq, hyag,

present the orders in which V appears with respect to the other terms.

For example: V o A+ AeV
Some identities of interest: @, are scalar variables and A, B are vector variables:

o Vigy)=Vy+yVy

o Ve(pA=VpeA+gVeA

o Vx(¢A=VgxA+gVxA

e V(AeB)=(AeV)B+(BeV)A+Ax(VxB)+Bx(VxA)
e Ve(AxB)=Be(VxA)—Ae(VxB)

e Vx(AxB)=A(VeB)+(BeV)A—B(VeA)—(AeV)B

e Ve(VxA)=0

o Vx(Vg)=0

e Vx(VxA)=V(VeA)—VeVA=V(VeA) -V2A

Proof:
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By simple expansion:
e o 5 2 8 n 8 o 2 ~
\% A=0—+]—+k=)e(IgA + +k
@A =(— + 1Tk )e (1A + JPA, +KeA,)

= a¢A>< + 8¢Ay + 8¢Az

OX ay 0z
o9 LN e 4
OX +¢ 8x 6y ¢ ay az
ax 6y 6 ay 0z
=v¢oA+¢VoA

The vector and scalar in the identities are defined intrinsically - that is without reference to any
special coordinate system. Verification of the above equations in any one coordinate system (e,g,
Cartesian) is equivalent to verification of all coordinate system.

Determination of Laplacian equation Ve Vi = Vi

Consider a scalar variable

Vi =— "=+ 2T =B

h oq, h, oq, h, oq,
s _floy. 1oy 1dy
e, B=[——; : B,,B,,B;
. [m o h aq,’ h mf (BB By)
veg_ 1 thh) , 0(h hB,) ath)}

hhh, * g, oa, oa,

1 6 hh 0 0 hh 0 0 hh 0
(e, A, Dy

hhh aq1 h, o0, 09, h, 0q,” oq, h, 0q,
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