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Chapter 3  
Description of Fluid Motion 
 
3.1  Approaches and Basis Concepts  
 
3.1.1   Microscopic View and Macroscopic View  
 
 

The mean free path (): the mean distance that molecules travel between collisions with neighboring 
molecules is defined as the mean free path. 
 
 

Continuous flow: a flow in which the mean free path () of the molecules is small compared with 
the smallest physical length scale of the flow field. (Example: the diameter if a cylinder about which 
the fluid is flowing). 
 
 
Free molecules flow: where the mean free path is the same order as the body scale. 
 
Example: Vehicles such as the space shuttle encounter free molecule flow at the extreme outer edge 

of the atmosphere, where the air density is so low that the mean free path () becomes order of the 
shuttle size. 
 
Low density flows: exhibit characteristic of both continuous flow and free molecule flows. 
 
We will be mainly concerned with continuous flows: 
 
A flow can be considered a continuum only if there are a large number of molecules in the control 
volume we are considering (moving/fixed) such that the substance can be treated as being 
continuous. 
 
A sufficient condition, though not a necessary condition, for the continuum assumption to be valid 
is: 
 

31
L

n
   

 
Where n is the number of molecules per unit volume. L is the smallest significant length scale in the 
flow field usually called the macroscopic length scale, and   is a sufficient small volume. 
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Microscopic view (statistical mechanics): Approaches to solve the questions from the point of 
individual molecules motion and behaviors. 
 
This method treats the fluid as consisting of molecules where motion is governed by the laws of 
dynamics. 
 
The macroscopic phenomena are assumed to arise from the molecular motion of the molecules, and 
the theory attempts to predict the macroscopic behavior of the fluid from the viewpoints of 
mechanics and probability theory. 
 
For a fluid which is in a state not too far from equilibrium. This approach yields the equations of 
mass, momentum and energy conservation. 
 
The molecular approach also yields expression for the transport coefficient of viscosity and the 
thermal conductivity, in terms of molecular quantities such as the force acting between molecules. 
 
The theory is well developed for light gases, but it is incomplete for polyatomic gas molecules and 
for liquids. 
 

Example:  Monotonic gas in 3 cm cube has 2010  atoms approximately under atmosphere pressure 
and temperature. To describe the velocity of each atom, the velocity components and to describe the 
position of each molecule, three coordinates must be specified. Thus, to completely describe the 
behavior of this system from a microscopic point of views, it would be necessary to deal with at least 

20106  equations.  
 
 
Macroscopic point of view (continuity concept):  
 
In the continuity approach, individual molecules are ignored, and it is assumed that the fluid consists 
of continuous matter. In other words, we are concerned only with gross or average behavior of 
many molecules through measurable or observable properties knows as “fluid field variables” such 

as VTP


,,,    

 
Pressure (P): a gas exert on the walls of a container can be measured by a gauge.  This pressure is the 
result of the change in momentum of the molecules as they collide with the wall.  Here we are not 
assumed with the action of the individual molecules but with the time averaged force on given area. 
 
If the matter can be considered as continuum, then, the continuous matters are required to obey the 
conservation laws of mass, momentum, energy, which give rise to a set of differential equations 
governing the field variables. 
 
The solution to these differential equations then defines the variation of each field variable with 
space and time. 
 

The continuous assumptions require that the mean free path (), of the molecules to be very small 
compared with the smallest physical length scale of the flow field (such as the diameter of cylinder 
or other body about which the fluid in flowing) 
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3.1.2  Basic Concepts 
 
Ideal gas: 
 
Ideal gas is composed of molecules which are small compared to the mean distance between them 
and so the potential energy arising from their mutual attraction may be neglected. Collisions between 
molecules or between molecules and the containing vessel are assumed to be perfectly elastic. The 

average distance a molecule travels before colliding with another is termed as the mean-free-path (). 
If the mean-free-path of the molecules approaches the order of magnitude of the dimensions of the 
vessel, then the concept of a continuum is not a valid assumption (ex. High vacuum technology, 
rarefied atmosphere). At temperature of 300K and above (room temperature and above) nitrogen 
and air behave as perfect or ideal gas up to pressure well above 1000 lb/in2. 
 
Pressure-P: 
 
If a body is placed in a fluid, its surface is bombarded by a large number of molecules moving at 
random. When molecules bombard a surface they rebound, and by Newton's law the surface 
experiences a force equal and opposite to the time rate of change of momentum of the rebounding 
molecules. Thus, static pressure is the normal force per unit area exerted on a surface due to the 
time rate of change of momentum of the molecules impacting (or crossing) that surface 
 

dA

dF
P n

dAdA '
lim
→

=  

 

Where dA’ is the smallest area for which the system can be considered a continuum and ndF  is the 

force acting normal to that surface. 
P is a point property and a scalar. P has units of (Force/Area), N/m2, lb/ft2, and lb/in2. Most 
pressure and vacuum gages read the difference between the absolute pressure and the atmospheric 
pressure existing at the gage, and this is referred as gage pressure. 
 
 

Density -   
 

Vd

dm

VdVd '
lim
→

=  

 

Where 'Vd  is the smallest volume for which the system can be considered a continuum and dm is 
the mass of that infinitesimal volume. 
 
 
Specific volume 
 

dm

Vd
v

VdVd '
lim
→

=  
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Where 'Vd  is the smallest volume for which the system can be considered a continuum and dm is 
the mass of that infinitesimal volume. 
 
 
Temperature - T 
 
The temperature of a gas (T) is directly proportional to the average kinetic energy of the molecules 
of the fluid. 
 

Note: ,, TP are all static properties. 

Example:  A static temperature is that temperature measured by a common thermometer. 
 
 

Viscosity -  
 
Viscosity is that property of a fluid in ordered motion which causes their layer immediately adjacent 
to a surface to remain at rest. 
 

Shear Stress 
dy

du
  

The constant of proportionality is  . 
 
If T is in Rankine: 

sec]./[
6.198

10270.2
2/3

8 ftslug
T

T

+
= −  

 
If T is in Kelvin: 

sec]/[
3.110

10456.1
2/3

6 
+

= − mkg
T

T
  

 
Steady Flow 
If fluid properties at a point in a field do not change with time, then they are a function of space 

only. They are represented by: ),,( 321 qqq =  Therefore for a steady flow 0=




t


. 

 
One-, Two-, and Three-Dimensional Flows 
 
A flow is classified as one-, two-, or three-dimensional depending on the number of space 
coordinates required to specify all the fluid properties and the number of components of the 
velocity vector. 
 
 For example, a steady three-dimensional flow requires three space coordinates to specify the 

property and the velocity vector is given by: 332211
ˆˆˆ eVeVeVV ++=


. Most real flows are three-

dimensional in nature.  
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On the other hand, any property of a two-dimensional flow field requires only two space 
coordinates to describe it and its velocity has only two components along the two space coordinates 
that describe the field. The third component of velocity is identically zero everywhere. Steady 
channel flow between two parallel plates is a perfect example of two-dimensional flow if the viscous 
effects on the plates are neglected. The properties of the flow can be uniquely represented by 

),( 21 qq = and the velocity vector can be written as 
2211
ˆˆ eVeVV +=


. The complexity of analysis 

increases considerably with the number of dimensions of the flow field.  
 
In one-dimensional flow properties vary only as a function of one spatial coordinate and the velocity 

component in the other two directions are identically zero. In other words, )( 1q =  and 
11êVV =


. 

 
Flux 
Flux is defined as a rate of flow of any quantity per unit area across a control surface. Thus, mass 
flux is the rate of mass flow rate per unit area and heat flux is the heat flow rate per unit area across 
the control surface. 
 
 
Incompressible 
If density is constant, the flow is called incompressible. If the density is variable, it is called 
compressible flow. Flow of homogeneous liquid is treated as incompressible. 
 
 
Boundary layer 
The boundary layer is that region near the surface of a body where viscous effects are important. 

Shear Stress 0== ywall
dy

du
  is large because 0=y

dy

du
is large. 

 
Effect of viscosity 
 
The speed of flow which increases from zero at the surface of the body to the full streaming speed 
away from the body. (Velocity gradient inside the boundary layer). 

 
Apparently steady force called the "skin friction drag" acting on the body in the direction of flow. 
 
Newtonian versus Non-Newtonian fluid 
 
Fluids for which the shear stress is directly proportional to the rate of strain are called Newtonian 

fluids. i.e., shear stress 
dy

du
   

 
For some fluids, however, the shear stress may not be directly proportional to the rate of strain. 

Shear Stress (  ) not proportional to strain 
dy

du
.  These fluids are classified as non-Newtonian. 

Examples:  blood, certain plastics, clay-waste mixture. 
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Viscosity is important in the boundary layer, the separated flow region, and the wake region. Rest of 

the regions can be essentially treated as inviscid where 0=  .  

 
Inviscid theory can adequately predict the pressure distribution and lift on a body. Inviscid theory 
also gives a valid representation of the streamlines and flow field away from the body. Inviscid 
theory can not predict any drag that depends on the friction. 
 
 
Classification based on approximations of flow problems 
Gas is a compressible, viscous, inhomogeneous substance, and the physical principles underlying its 
behavior are not completely enough understood to permit us to formulate exactly, any flow problem. 
Even if this were possible, the resulting equations would, in all probability be too difficult to solve. 
Hence all formulations are approximate at best. 
 
Perfect fluid: homogeneous (not composed of discrete particles), incompressible (inelastic), inviscid 
fluid. The assumption of a perfect fluid gives good agreement with experiment for flows outside of 
boundary layer and wake of well-streamlined bodies moving with velocities of less than 200 mph at 
altitudes under about 100,000 ft. 
 
Compressible, inviscid fluid: Fluid is considered compressible (elastic) and hence speed of sound 
characterizes the flow. It provides a good approximation for problems involving the flow outside of 
boundary layer and wake of bodies for all speeds at altitudes below about 100,000 ft. 
 
Viscous, compressible fluid: Viscosity is included. Flow within the boundary layer and wake is 
amenable to accurate analysis, provided the flow is laminar (good for all speeds below altitudes of 
100,000 ft). 
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3.2  Methods to Describe Fluid Motion 
 
3.2.1 Lagrangian Method 
 
Lagrangian method, a natural extension of particle mechanics, considers the individual molecules 
and obtains conversation equations (mass, momentum, and energy) based on individual molecular 
motion. 
 
Attention is paid to what happens to the individual fluid particle (identified usually by its position at 
time t=0) in the course of time, what paths they described, what velocities or accelerations they 
possess, and so on. 
 

The temperature in Lagrangian variables is given by ),,,( tcbaTT = , where ),,( cba  is the position 

of the particle at time t=0. 
 

Also ),,,( tcbaRR


=  is the position of the particle at time t, tagged by ),,( cba . cbat ,,,  are the 

independent variables in Lagrangian frame. Since the fluid elements are continuously distributed, the 

values the parameters ),,( cba  will assume for the various elements that are continuous. 

 
 

3.2.2  Eulerian Method  
 
In Eulerian description, we describe the distribution of a macroscopic property as a function of 
space and time which we refer to as a Eulerian field of that property. Thus, we watch a fixed point 

),,( zyx  in space as time t proceeds. 

 

The independent variables are the spatial coordinate ),,( zyx  and time t. 

 
For example:  
 

The temperature of the fluid is given by ),,,( tzyxTT =   

• At a given ),,( zyx , ),,,( tzyxTT =  gives the time history of T at that point. 

• At a given time t, ),,,( tzyxTT =  gives the spatial variation of T. 

• In order words, for any fluid quantity Q can be expressed as ),( tRQQ


=  - a scalar or a 

vector field. 
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3.3  Substantial/Material Derivative 
 
Substantial/material derivative gives the relation between the derivatives in Lagrangian and Eulerian 
derivatives. 
 
In Eulerian viewpoint, since one attention is focused upon specific points in space at various times, 
the history of the individual fluid particles is not explicit. The substantial derivative allows us to 
express the time rate of change of a particle property in terms of the spatial (Eulerian) derivatives of 
that property at a given point. 
 
Let   be any fluid variable such as density, velocity or energy. From Eulerian reference frame,  
 

),(),,,( tRtzyx


 ==  

 
But if a specific fluid element is observed for a short period 

of time t as it flows, its position will change by 

zyx  ,, , and its value will change by an element 

amount  . 

 
Thus, observed in Lagrangian reference frame, the 

independent variables are 
000 ,, zyx  and time t, where 

000 ,, zyx  are the initial are coordinates of the fluid particle. 

 

Hence, zyx ,, are no longer independent but function of time t as defined by the trajectory of the 

element. 
 
Using differential calculus, the change in   can be calculated as 
 

z
z

y
y

x
x

t
t

















+




+




+




, which equates the observed   in Langrangian reference and 

divided by t  gives: 

 

t

z

zt

y

yt

x

xtt 



















+




+




+




=  

 

As 0→t  

 

Dt

D

tt








=

→0
lim  

Therefore: 

z 

x 
y 

 (t) 

(t+t)= 

(t)+ 
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

 







domainEulerianinExpression

frameLagrangian

particleafollowing
sderivativeTime

V
t

V
tz

v
y

u
xttD

D






)( •+



=

•+



=




+




+




+




=

 

tD

D
 is the change rate of a fluid property as the given fluid particle moves through space. 

 

•+



= V

ttD

D 
 

 

t


 is the time change rate of fluid property of the given fixed point (i.e., local derivatives) 

 

•V


 is the time change rate of fluid property due to the movement of the fluid element from one 
location to another in the flow field where the flow property is spatially different (i.e., 
convective derivative). 
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2.4  Acceleration of a Fluid Particle 
 
Acceleration of a fluid particle is by definition the change rate of its velocity at time t. 
 
Lagrangian derivative of the velocity gives the acceleration of the fluid particle. 
 

Since  •+



= V

ttD

D 
 

 

332211
ˆˆˆ eVeVeVV ++=


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Example:  
 
In Cylindrical coordinate system 

zzrr eVeVeVV ˆˆˆ ++= 


 

 

Since unit vectors zr eee ˆ,ˆ,ˆ
  do not change with time at a given point. Unit vectors change with 

respect to spatial coordinate in the  - direction. 
 

i.e., r
r e

e
e

e
ˆ

ˆ
;ˆ

ˆ
−=




+=








  

 
Therefore, 
 

z
Z

r
r e

t

V
e

t
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t
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Therefore: 
 

 
 
 
Another form of the Substantial derivative: 
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Proof:  

Since  )()()()()( ABBAABBABA


++•+•=•  

 

BAABABBABA


)()()()()( •−•−•+•=  

 

Make BVAA


== ;  

Then  
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)()()()()( AVVAAVVAVA


++•+•=•     (1) 

 

)()()()()()( AVVAAVAVVAVA
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−=•−•−•+•=   (2) 

 
(1)+(2)  
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Example: acceleration of a fluid particle: 
 
Lagrangian derivative of velocity gives the acceleration of a fluid particle. 
 
Stagnation flow: 
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