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Chapter 4  
Conservation Equations 
 

 
4.1  Three Basic Laws 
 
System: A system is a region enclosed by a rigid or flexible boundary with a quantity of matter of 
fixed mass and identity. Heat and work can cross the boundary of a system. 
 
Control volume: A control volume is a finite region in space that may be fixed or moving in space. 
Mass, momentum, heat and work can cross the boundary of the region called the control surface. 
 
If the laws of physics are written for a fixed region of space, i.e., for different fluid particles occupy 
this region at different times, then, the frame of reference is said to be Eulerian. However, if the 
laws govern the same fluid particles in a particular region that moves with the fluid, the laws are 
written in Lagrangian reference frame.  
 
Basic conservation laws can be applied more easily to an arbitrary collection of matter of fixed 
identity (a system composed of the same quantity of matter at all times) than to a volume fixed in 
space. Applying conservation laws to matter of fixed identity gives rise to Lagrangian reference 
frame and the associated substantial derivatives of volume integrals. However, control volumes of 
fixed shape is preferred (Eulerian reference frame) for the following reasons of difficulty with the 
Lagrangian reference frame. 
 

• The fluid media is capable of continuous distortion and deformation, since it is often 
extremely difficult to identify and follow the same mass of fluid at all times as must be done 
in Lagrangian reference frame. 

 

• Also, our primary interest often is not in the motion of a given mass of fluid, but rather in 
the effect of the overall fluid motion on some device or structure. 

 
Thus the basic laws applied to a fixed mass in Lagrangian reference frame must be transformed to 
equivalent expressions in Eulerian reference frame. The theorem which permits this transformation 
is called Reynolds' transport theorem. 
 
 
Conservation of mass: 
The conservation of mass simply states that the mass, M, of the system is constant.  
Writing as an equation, one obtained: 
 

0)()(0 ===  SS

S Vd
dt
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Conservation of Linear Momentum (Newton’s Second Law): 
Sum of all external forces acting on the system is equal to the time change rate of the linear 
momentum of the system. 
 

)()(  ==
SSsystemaonacting

VdV
dt

d
dmV

dt

d
F 


 

 
 
 
Conservation of Energy (First Law of Thermodynamics): 

systemsystemsystemsystemsystemsystem td

dE
QWorEQW =+=+   

 

 ==
Vsystem

system
VdedmeE   

 
Where e is the specific inner energy. 
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4.2  Reynolds Transport Theorem 
 
Let N be any extensive property of the identifiable fixed mass (system) such as total mass, 
momentum, or energy. The corresponding intensive property (extensive property per unit mass) will 
be designated as  . 
 
Then if : 
 

 ==
Vsystem

system
VddmN   

 

Let us follow this identifiable specific mass of fluid for a short period of time t  as it flows.  

 

Since a specific mass of fluid is being considered and since 000 ,, ZYX  and t  are the independent 

variables in the Lagrangian framework, the quantity N will not be a function of t  only as the specific 
mass moves: 
 

i.e.,  ),,,( 000 tZYXNN
system

=  in general  

 
For a specific mass, it becomes 
 

)(tNN
system

=  only as 000 ,, ZYX  are fixed. 

 
Note: N is not a function of zyx ,,  - the coordinates in the Eulerian space. 

 
The rate of change of N can be written:  
 

]})()()()([
1

{lim
)()(

0  −++=
+

→
tVttV

tsystem
VdttVdtttt

tDt

DN






 

 

)()( tt   can be thought of as an extensive property per unit volume, and denoted by  . Therefore, 

the above integral becomes: 
 

]})()([
1

{lim
)()(

0  −+=
+

→
tVttV

tsystem
VdtVdtt

tDt

DN






 

 

Where V  is the volume of the specified mass and it may change the size and shape as it moves. 
 

The quantity )( tt  +  integrated over volume )(tV  will be subtracted and then added again 

inside the above limit to yield: 
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     twosencond
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twofirst

tVttV
t

tVtVtVttV
t

V

system

VdtVdttVdttVdtt
t

VdtVdttVdttVdtt
tDt

VdD

Dt

DN

]})()()()([
1

{lim

]})()()()([
1

{lim

)()()()(
0

)()()()(
0






−+++−+=

−+++−+==

+
→

+
→















 
 
The first two integrals inside the limit correspond to holdup the integrand fixed and permitting the 

control volume V  to vary, while the second two integrals correspond to holding V fixed and 

permitting the integrand   to vary. 

 
The second integrals is by definition the local derivative in Eulerian reference frame. 
 
Therefore,  
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The remaining limit corresponds to holdup the integrand   fixed, and permitting the control 

volume V  to vary. 
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0
 

 
Geometrically, this can be visualized as the adjacent figure, 
and thus the limit is to be carried in the shadowed region. 
 
In the limiting sense, the perpendicular distance from any 

point on the inner surface to the outer surface is teV nˆ•


 

and therefore, Vd  can be equate to dSteV nˆ•


. 

 
Thus, the volume integral may be transformed to surface 
integral. 
 

)(tV

V


)( ttV +

nê dA
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The Lagrangian derivative of a volume integral has been converted into a surface integral in which 
the integrands contain only Eularian derivatives. 
 
Physical meaning: 
 

Dt

VdD

Dt

DN Vs


=



  is the total rate of change of any arbitrary extensive property of the system. 





V

Vd
t

  is the time rate of change of the arbitrary extensive property N with the 

control volume evaluated by an observer fixed in the moving control 
volume. 

  

 •
..SC

AdV


   is the net rate of efflux of the extensive property N through the control 

surface to the control volume. 
 
The equation:  
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Where   is any intensive property corresponding to N. (i.e.,   = N per unit mass), 
and it can be used for different quantities as follows. 
 

SN       

 
Mass    1 
 

Linear momentum  V


 
 

Angular momentum  VR


  
 
Energy    e  
 
Entropy   s 
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4.3  Conservation of Mass 
 
 
The conservation of mass simply states that the mass, M, of the system is constant.  
 

0=
Dt

DM s  

 
Using Reynolds’ transport theory, this can be converted to Euler formulation as: 




•+



==

....

.. )(
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VCs AdVVd
tDt
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DN 




  when   1= ,  then 

 

0)(
....

=•+



= 
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s AdVVd
tDt

DM 
  

 
Physically,  

 

0
surface control ethrough th

 (outflow)efflux  mass of rateNet 

 volumecontrol a inside

 mass of change of Rate
=








+








  

 
Since the control volume is fixed with respect to a coordinate system attached to it, the limits of 
integration are also fixed. Hence, the time derivative can be placed inside the volume integral, and 
the equation can be re-written as:  
 

0)(
....

=•+




SCVC

AdVVd
t





 

 
States the conservation of mass law in a finite space. 
 
Applying Guess divergence theorem, we convert the surface integral to volume integral to obtain: 
 

0)]([)()(
..........

 =•+



=•+




=•+





VCVCVCSCVC

VdV
t

VdVVd
t

AdVVd
t











 

 
Therefore: 

0)]([
..

 =•+




VC

VdV
t





 

 

Since the control volume V  was arbitrarily chosen, the only way this equation can be satisfied is for 
the integrand to be zero at all points within the control volume.  Thus, by setting the integrand to 
zero, we have the partial equation of conservation law: 
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0)( =•+



V

t





 

 
Mathematically, the variation of the above equation can be: 
 

0

)(
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V
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VV
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Simplifications: 
Form incompressible flows:   

 is constant, then   0;0 ==







t
 

Therefore,    0=• V
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4.4  Conservation of Momentum 
 
Newton’s second law:  
 
[Time change rate of momentum of a system] = [Resultant external force acting on the system]  
 

i.e.,    +== bodySurfaceS
S FFF

dt

Md 


 

 

Use V


= in Reynolds’ transport theorem apply to SM


where =
..VC

S VdVM 


 = total momentum  

 

 •+



==

......

)(
SCVCVC

s AdVVVdV
t

VdV
dt

d

dt

Md 


  

 
Therefore; 
 

bodysurface

SCVC

FFAdVVVdV
t


+=•+






....

)(   

 
 

surfaceF


 Surface forces such as pressure and shear stress. The surface forces usually can be 

expressed as  •=
..

~

SC

surface AdPF


, where P
~

 is the stress tensor exerted by the 

surroundings on the particle surface. ~
~~
+−= IPP  

 
 

bodyF


 Body forces such as electromagnetic, gravitational forces. Usually the body force can 

be expressed as  =
..VC

body VdfF


 , where f


 is a vector which references the 

resultant force per unit mass. 
 
Then, the momentum equation reduces to: 
 

 +•=•+




........

~
)(

VCSCSCVC

VdfAdPAdVVVdV
t


  

 
Using divergence theorem for the control surface integrals, we obtained following equation after 
noting that the limits do not change. 
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Expand the above equation using AAA
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Therefore, the differential form of the momentum equation is: 
 

0
~

=−•− fP
tD

VD 
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4.5  The Navier-Stokes Equations 
 
 

0
~
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fPVV

t
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Where  ~
~~
+−= IPP , and tensor 
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 =~  

 
Re-writing the equation after substitution leads to: 
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Another form of Navier-Stokes equation: 
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 i.e.,  0~ =−•−+ fP
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VD 
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Stress Tensor 
 
The stress tensor has nine components: 
 

zzyzxz

zyyyxy

zxyxxx







 =~  

 
Newtonian fluid,  

 ]
~
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3

2
)([~ IVVV T


•−+=   

 
For incompressible flow,  in Cartesian coordinate 
system 
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4.6 Expansion of the Navier-Stokes Equation in Cartesian 
Coordinate 

The vector form of the Navier-Stokes equation is : 
 

0~ =−•−+ fP
tD

VD 


  

 
For incompressible flow, Navier-Stokes equation in Cartesian coordinate system will be: 
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y-direction: 
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4.7 Expansion of the Navier-Stokes Equation in Cylindrical 
Coordinate 
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Therefore, the Navier-Stokes equation in cylindrical coordinate system will be: 
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4.7  Discussion of Flow Governing Equations 
 
The properties and the flow pattern of a moving fluid are governed by the fundamental laws of 
physics expression: 

• Conservation of mass 

• Conservation of momentum 

• Conservation of energy 

• Equation of state 
When the mathematical equations expression these laws are solved satisfying the approximate initial 
and boundary conditions, the fluid properties and the flow pattern results. 
 

These conservation equations involved three scalar fields (i.e., TP,, ) and one vector field (i.e., 

V


) as the unknown functions. 

 
• Independent variables:  tqqq ,,, 321  

• Dependent variables:   321 ,,,,, VVVTP  

• Prescribed quantities:   RTcTf p ),(),(, 


, etc. 

• There are six equations and six dependent variables   Equations can be solved. 

• The sum of the order of the differential equations is equal to nine and we need nine 
boundary conditions. 

• The conservation equations are nonlinear, that is coefficients of some of the derivatives are 
dependent variables. Need an interactive solution. 

• All equations are coupled and hence must be solved for simultaneously. 
 

In general, exact solutions to the conservation equations are unknown because they are nonlinear 
and no general method is presently known for solving nonlinear differential equations. However 
when restrictions are placed on the flow geometry and the fluid properties, several exact solutions to 
the conservation equations are possible. 
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4.8   Hagan-Poiseuille Flow 
 
Hagan-Poisuille flow results when the flow through a circular pipe has attained what is called a fully 
developed profile. 
 
Assumptions: 

1. Steady flow:     0=




t
 

2. Incompressible flows   ,  are constant. 

3. Axial symmetry   0=





  

4.  In addition, we impose on velocity  0=rV  

5. No body forces. 
 

Continuity equation: 
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zV  is only the function of r, not functions of Z and   [due to the axial symmetry of 0=





 ]. 

 
Momentum equation: 
 

r-direction: 
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Leads to the conclusion of  )(ZPP =  
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Z-direction: 
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Only a function of Z Only a function of r
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The only way the above equation is true if the two side are both equal to a constant. 
 
Therefore: 
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 where C is a constant. 
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Boundary conditions: 

• At the wall,  0,0 == ZVrr . 

• At the centerline, slope of velocity profile is zero. 0, 0ZV
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