Chapter 6

Basic flows

6.1 Uniform Flow at An Angle α

Given velocity field is:

$$
\vec{V}=\left(V_{\infty} \cos \alpha, V_{\infty} \sin \alpha\right)
$$

Check if conservation of mass is satisfied first to test if it is a physically possible flow?

$$
\begin{aligned}
& \nabla \cdot \vec{V} \stackrel{?}{=} 0 \\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \stackrel{?}{=} 0
\end{aligned}
$$

Since u and v are both constants, $\nabla \cdot \vec{V}=0$
Therefore ψ exists. From conservation of mass,

$$
\begin{aligned}
& u=\frac{\partial \psi}{\partial y} \text { and } v=-\frac{\partial \psi}{\partial x} \\
& u=V_{\infty} \cos \alpha=\frac{\partial \psi}{\partial y} \\
& \quad=V_{\infty} \cos \alpha \quad y+f(x) \\
& \frac{\partial \psi}{\partial x}=-v=0+f^{\prime}(x) \\
& f^{\prime}(x)=-V_{\infty} \sin \alpha \quad \text { or } \quad f(x)=-V_{\infty} \sin \alpha x+g(y) \\
& \quad=-V_{\infty} \sin \alpha x+V_{\infty} \cos \alpha y \\
& \quad=\operatorname{const} .=-V_{\infty} \sin \alpha x+V_{\infty} \cos \alpha \quad y \\
& \overline{V_{\infty}}=-\sin \alpha \quad x+\cos \alpha \quad y \\
& \overline{V_{\infty} \cos \alpha}=-\tan \alpha x+y
\end{aligned}
$$

Equation of streamlines:

$$
y=\tan \alpha \quad x+\frac{}{V_{\infty} \cos \alpha}
$$

Check if the given flow is a potential flow?

$$
\begin{aligned}
& \nabla \times \vec{V} \stackrel{?}{=} 0 \\
& \frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \stackrel{?}{=} 0
\end{aligned}
$$

Since V_{∞} and α are constant throughtout the flow, $\nabla \times \vec{V}=0$
Therefore ϕ exists and $\vec{V}=\nabla \phi$.

$$
\begin{aligned}
& \vec{V}=\nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath} \\
& \frac{\partial \phi}{\partial x}=V_{\infty} \cos \alpha=u \\
& \phi=V_{\infty} \cos \alpha x+f(y) \\
& \frac{\partial \phi}{\partial y}=0+f^{\prime}(y)=v \\
& f^{\prime}(y)=V_{\infty} \sin \alpha \quad \text { or } \quad f(y)=V_{\infty} \sin \alpha y+f(x) \\
& \left.\phi=V_{\infty} \cos \alpha x+V_{\infty} \sin \alpha y \quad \text { (uniform flow at an angle } \alpha\right) \\
& \phi=\operatorname{const}=V_{\infty} \cos \alpha x+V_{\infty} \sin \alpha y \\
& \frac{\phi}{V_{\infty} \sin \alpha}=\frac{x}{\tan \alpha}+y
\end{aligned}
$$

Equation of Equipotential lines:

$$
y=-\frac{1}{\tan \alpha} x+\frac{\phi}{V_{\infty} \sin \alpha}
$$

ϕ constant lines are orthogonal to ψ constant lines.

6.1.1 Г: Contour Integral over a Close CurveC

$$
\begin{aligned}
\Gamma & =-\oint \vec{V} \cdot d \vec{l} \\
& =-\left[\int_{1}^{2} \vec{V} \cdot d \vec{l}+\int_{2}^{3} \vec{V} \cdot d \vec{l}+\int_{3}^{4} \vec{V} \cdot d \vec{l}+\int_{4}^{1} \vec{V} \cdot d \vec{l}\right] \\
& =-\left[\int_{1}^{2}\left(V_{\infty} \hat{e}_{s}\right) \cdot\left(d s \hat{e}_{s}\right)+\int_{2}^{3}\left(V_{\infty} \hat{e}_{s}\right) \cdot\left(d h \hat{e}_{t}\right)+\int_{3}^{4}\left(V_{\infty} \hat{e}_{s}\right) \cdot\left(-d s \hat{e}_{s}\right)+\int_{4}^{1}\left(V_{\infty} \hat{e}_{s}\right) \cdot\left(-d h \hat{e}_{t}\right)\right] \\
& =-\left[\left(V_{\infty} s\right)+0+\left(-V_{\infty} s\right)+0\right] \equiv 0
\end{aligned}
$$

6.2 2-D Source (Line Source)

Definition: A source is a point from which fluid issues along radial lines. Streamlines are straight lines emanating from a central point. Velocity varies inversely with distance from the origin.

From the definition of the source the velocity vector can be written as:

$$
\vec{V}=v_{r} \hat{e}_{r}
$$

where $v_{r} \propto \frac{1}{r}$ or $v_{r}=\frac{c}{r}$, and $v_{\theta}=0$ where C is a constant.
Check if the assumed flow is physically possible.

$$
\begin{aligned}
& \vec{V}=\frac{c}{r} \hat{e}_{r}+0 \hat{e}_{\theta} \\
& \nabla \cdot \vec{V} \stackrel{?}{=} 0 \\
& \nabla \cdot \vec{V}=\frac{1}{r}\left[\frac{\partial\left(r v_{r}\right)}{\partial r}+\frac{\partial\left(v_{\theta}\right)}{\partial \theta}\right]=\frac{1}{r}\left[\frac{\partial(c)}{\partial r}+\frac{\partial(0)}{\partial \theta}\right] \equiv 0
\end{aligned}
$$

Flow is physically possible and ψ exists.

6.2.1 Evaluation of c

From mass conservation for a steady flow we know

$$
\int d \dot{m}=0
$$

From continuity the mass of fluid per unit time crossing any circle centered at the source is a constant and equal to the mass of fluid issuing per unit time from the source. Consider a cylinder centered on the source. There is mass flowing out only from the sides of the cylinder.

$$
\begin{aligned}
& d \vec{A}_{r}=h_{\theta} h_{z} d \theta d z \hat{e}_{r}=r d \theta d z \hat{e}_{r} \\
& \dot{m}=\int_{0}^{L} \int_{0}^{2 \pi} \rho \vec{V} \cdot d \vec{A}=\int_{0}^{L} \int_{0}^{2 \pi} \rho\left(V_{r} \hat{e}_{r}\right) \cdot(r d \theta d z) \hat{e}_{r}
\end{aligned}
$$

It is a $2-\mathrm{D}$ flow and hence the integral can be reduced to:

$$
\dot{m}=L \int_{0}^{2 \pi} \rho V_{r} r d \theta
$$

V_{r} is not a function of $\theta . V_{r}$ is only a function of r.

$$
\dot{m}=L \int_{0}^{2 \pi} \rho\left(\frac{c}{r}\right) r d \theta=\rho L c 2 \pi
$$

Cylinder centered at a source

Volume flow per second is:

$$
\frac{\dot{m}}{\rho}=c 2 \pi L
$$

Define K as the source strength. It is physically the rate of volume flow from the source per unit depth into the page $(2-\mathrm{D})$.

$$
K=2 \pi c \quad \text { or } \quad c=\frac{K}{2 \pi}
$$

then the velocity becomes:

$$
v_{r}=\frac{K}{2 \pi r}
$$

Since $\nabla \cdot \vec{V}=0$ is satisfied, the flow is physically possible and from the definition of ψ in polar coordinates, can be found.

$$
\begin{aligned}
& v_{r}=\frac{\partial \psi}{r \partial \theta} \quad \text { and } \quad v_{\theta}=-\frac{\partial \psi}{\partial r} \\
& \frac{\partial \psi}{r \partial \theta}=\frac{K}{2 \pi r} \\
& \frac{\partial \psi}{\partial \theta}=\frac{K}{2 \pi} \\
& \quad=\frac{K}{2 \pi} \theta+f(r) \\
& \frac{\partial \psi}{\partial r}=-v_{\theta}=0+f^{\prime}(r)=0 \\
& f(r)=\text { const } \\
& \quad=\frac{K}{2 \pi} \theta
\end{aligned}
$$

Since the source strength, K is a constant, ψ constant lines are radial lines.

$$
=\frac{K}{2 \pi} \theta=\text { const } .
$$

Is $\nabla \times \vec{V} \stackrel{?}{=} 0$.

$$
\nabla \times \vec{V}=\frac{1}{r}\left|\begin{array}{ccc}
\hat{e}_{r} & r \hat{e}_{\theta} & \hat{e}_{z} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
v_{r} & r v_{\theta} & v_{z}
\end{array}\right|=\frac{1}{r}\left[\frac{\partial\left(r v_{\theta}\right)}{\partial r}-\frac{\partial\left(v_{r}\right)}{\partial \theta}\right] \hat{e}_{z} \equiv 0
$$

therefore ϕ exists.

$$
\begin{aligned}
& v_{r}=\frac{\partial \phi}{\partial r}=\frac{K}{2 \pi r} \quad \text { and } \quad v_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}=0 \\
& \phi=\frac{K}{2 \pi} \ln r+g(\theta) \\
& \frac{\partial \phi}{\partial \theta}=0+g^{\prime}(\theta)=0 \\
& g(\theta)=\text { const. } \\
& \therefore \phi=\frac{K}{2 \pi} \ln r
\end{aligned}
$$

6.3 Combination of Potential Flows

Uniform flow and source/sink satisfy Laplace equation and therefore superposition is possible.

6.3.1 Combination of a Uniform Flow to The Right $(\alpha=0)$ and A Source at The Origin

Stagnation Point:

At the stagnation point, $\vec{V} \equiv 0$

$$
\begin{aligned}
& v_{r}=V_{\infty} \cos \theta+\frac{K}{2 \pi r}=0 \\
& v_{\theta}=-V_{\infty} \sin \theta=0
\end{aligned}
$$

Solve for θ and r at the stagnation point to get $\left(r_{\text {stag }}, \theta_{\text {stag }}\right)$. Proceed to find $\psi_{\text {stag }}$ to get the shape of the body. From $v_{\theta}=0$:

$$
\begin{aligned}
& \sin \theta=0 \\
& \theta=0 \text { or } \pm \pi
\end{aligned}
$$

Case 1: $\theta_{s}=0$. Sove for r_{s} from $v_{r}=0$

$$
\begin{aligned}
& v_{r}=V_{\infty} \cos \theta+\frac{K}{2 \pi r}=0 \\
& \text { if } \theta=\theta_{s}=0 \\
& \cos \theta_{s}=1 \\
& v_{r}=V_{\infty}+\frac{K}{2 \pi r_{s}}=0 \\
& \text { or } \quad r_{s}=-\frac{K}{2 \pi V_{\infty}}
\end{aligned}
$$

Impossible solution as $r_{s}<0 ;\left(\because K\right.$ and V_{∞} are positive $)$
Case 2: $\theta_{s}= \pm \pi$.

$$
\begin{aligned}
& v_{r}=-V_{\infty}+\frac{K}{2 \pi r_{s}}=0 \\
& r_{s}=\frac{K}{2 \pi V_{\infty}}
\end{aligned}
$$

$\theta_{s}=+\pi$ for the upper half of the body
$\theta_{s}=-\pi$ for the lower half of the body
Coordinates of the stagnation point:

$$
\left(r_{s}, \theta_{s}\right)=\left(\frac{K}{2 \pi V_{\infty}}, \pm \pi\right)
$$

Body Shape (Stagnation Streamline):

A general expression for the streamfunction for the combined flow is:

$$
=V_{\infty} r \sin \theta+\frac{K}{2 \pi} \theta
$$

Find ψ_{s} ($=$ the body shape) by substituting $\left(r_{s}, \theta_{s}\right)$.

$$
\psi_{s}=V_{\infty} r \sin (\pm \pi)+\frac{K}{2 \pi}(\pm \pi)= \pm \frac{K}{2}=\text { const } .
$$

In Cartesian coordinate, the general expression for the body streamfunction becomes:

$$
\begin{aligned}
& \pm \frac{K}{2}=V_{\infty} y+\frac{K}{2 \pi} \tan ^{-1}\left(\frac{y}{x}\right) \\
& \frac{K}{2 \pi} \tan ^{-1}\left(\frac{y}{x}\right)=\left(\pm \frac{K}{2}-V_{\infty} y\right) \\
& \tan ^{-1}\left(\frac{y}{x}\right)=\left(\pm \pi-\frac{2 \pi V_{\infty} y}{K}\right) \\
& \frac{y}{x}=\tan \left(\pm \pi-\frac{2 \pi V_{\infty} y}{K}\right) \\
& x=\frac{y}{\tan \left(\pm \pi-\frac{2 \pi V_{\infty} y}{K}\right)}
\end{aligned}
$$

To find maximum y value, consider $\psi=K / 2$ (upper half of the body).

$$
\begin{aligned}
& \frac{K}{2}=V_{\infty} y+\frac{K}{2 \pi} \tan ^{-1}\left(\frac{y}{x}\right) \\
& y_{\max }=y_{@ x=\infty}=\frac{K}{2 V_{\infty}}
\end{aligned}
$$

6.3.2 Combined Flow of a Source at $(-b, 0)$ and a Sink at $(b, 0)$

$$
=\frac{K}{2 \pi} \theta_{1}-\frac{K}{2 \pi} \theta_{2}
$$

where θ_{1} and θ_{2} are measured from the center of the source and sink respectively.

$$
\begin{gathered}
\theta_{1}=\tan ^{-1}\left(\frac{y}{x+b}\right), \quad \theta_{2}=\tan ^{-1}\left(\frac{y}{x-b}\right) \\
\theta_{2}-\theta_{1}=\tan ^{-1}\left(\frac{y}{x-b}\right)-\tan ^{-1}\left(\frac{y}{x+b}\right) \\
\theta_{2}-\theta_{1}=\tan ^{-1}\left(\frac{2 b y}{x^{2}+y^{2}-b^{2}}\right) \\
=\psi_{1}+\psi_{2}=\frac{K}{2 \pi}\left(\theta_{1}-\theta_{2}\right) \\
\theta_{1}-\theta_{2}=-\tan ^{-1}\left(\frac{2 b y}{x^{2}+y^{2}-b^{2}}\right) \\
\psi_{\text {source}+\operatorname{sink}}=-\frac{K}{2 \pi} \tan ^{-1}\left(\frac{2 b y}{x^{2}+y^{2}-b^{2}}\right) \\
\frac{2 \pi \psi}{K}=-\tan ^{-1}\left(\frac{2 b y}{x^{2}+y^{2}-b^{2}}\right) \\
\tan \left(\frac{2 \pi}{K}\right)=-\frac{2 b y}{x^{2}+y^{2}-b^{2}} \\
x^{2}+y^{2}+2 b y \cot \left(\frac{2 \pi}{K}\right)=b^{2} \\
(x-0)^{2}+\left(y+b \cot \left[\frac{2 \pi}{K}\right]\right)^{2}=b^{2}\left(1+\cot ^{2}\left[\frac{2 \pi}{K}\right]\right) \\
(x-0)^{2}+\left(y+b \cot \left[\frac{2 \pi}{K}\right]\right)^{2}=b^{2} \csc ^{2}\left[\frac{2 \pi}{K}\right]
\end{gathered}
$$

Equation of a circle with center at $\left(0, \pm b \cot \frac{2 \pi \psi}{K}\right)$ and radius of $\left(b \csc \frac{2 \pi \psi}{K}\right)$. When $y=0, x= \pm b$. All streamlines go through $\pm b$.

6.3.3 Uniform Flow to The Right+Source ($-b, 0$)+ Sink ($b, 0$) (Rankine oval)

- Source of strength K placed at $(-b, 0)$
- Sink of strength K placed at $(b, 0)$
- Uniform flow to the right $(\alpha=0)$

$$
=V_{\infty} r \sin \theta+\frac{K}{2 \pi} \theta_{1}-\frac{K}{2 \pi} \theta_{2}
$$

Problem:

Analyze Rankine oval.

6.3.4 2-D Doublet

Definition: A doublet is obtained when a source and sink of equal strength approach each other so that the product of their strength and the distance apart remains a constant.

$$
B=K(2 b)=\text { constant }
$$

Doublet

$$
\begin{aligned}
& \psi_{\text {source }+ \text { sink }}=-\frac{K}{2 \pi} \tan ^{-1}\left(\frac{2 b y}{x^{2}+y^{2}-b^{2}}\right) \\
& =-\frac{2 b K}{4 \pi} \frac{\tan ^{-1}\left(\frac{2 b y}{x^{2}+y^{2}-b^{2}}\right)}{b} \\
& \lim _{2 b K \rightarrow \mu} \psi_{\text {source }+ \text { sink }}=\psi_{\text {doublet }}=-\frac{\mu}{4 \pi} \lim _{b \rightarrow 0}\left[\frac{\tan ^{-1}\left(\frac{2 b y}{x^{2}+y^{2}-b^{2}}\right)}{b}\right]
\end{aligned}
$$

Using L'Hospital's rule:

$$
\begin{aligned}
& \psi_{\text {doublet }}=-\frac{\mu}{4 \pi} \lim _{b \rightarrow 0}\left[\frac{\frac{\frac{d}{d b} \frac{2 b y}{x^{2}+y^{2}-b^{2}}}{1+\left(\frac{2 b y}{x^{2}+y^{2}-b^{2}}\right)^{2}}}{\frac{d b}{d b}}\right]=-\frac{\mu}{4 \pi} \lim _{b \rightarrow 0}\left[\frac{\frac{\left(x^{2}+y^{2}-b^{2}\right)(2 y)-(2 b y)(-2 b)}{\left(x^{2}+y^{2}-b^{2}\right)^{2}}}{1+\left(\frac{2 b y}{x^{2}+y^{2}-b^{2}}\right)^{2}}\right]=-\frac{\mu}{4 \pi}\left(\frac{2 y}{x^{2}+y^{2}}\right) \\
& \psi_{\text {doublet }}=-\frac{\mu}{2 \pi} \frac{\sin \theta}{r}
\end{aligned}
$$

Streamlines

$$
\begin{aligned}
& x^{2}+y^{2}+\frac{\mu y}{2 \pi \psi}=0 \\
& (x-0)^{2}+\left(y+\frac{\mu}{4 \pi \psi}\right)^{2}=\left(\frac{\mu}{4 \pi \psi}\right)^{2}
\end{aligned}
$$

Streamlines are circles centerd on the y-axis a distance $-\frac{\mu}{4 \pi \psi}$ from the x-axis with a radius of $\left|\frac{\mu}{4 \pi \psi}\right|$. All circles pass through the origin.

Problem:

Show that $\phi=\frac{\mu}{2 \pi} \frac{\cos \theta}{r}$ for a 2-D doublet.

6.3.5 Uniform Flow to The Right + A 2-D Doublet

Quantity	Uniform flow	2-D doublet	Combination
\vec{V}	$V_{\infty} \hat{\imath}$		
ϕ	$V_{\infty} x$	$\frac{\mu}{2 \pi} \frac{\cos \theta}{r}$	$V_{\infty} x+\frac{\mu}{2 \pi} \frac{\cos \theta}{r}$
	$V_{\infty} y$	$-\frac{\mu}{2 \pi} \frac{\sin \theta}{r}$	$V_{\infty} y-\frac{\mu}{2 \pi} \frac{\sin \theta}{r}$

$$
\begin{aligned}
& V_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=\frac{1}{r}\left[V_{\infty} r \cos \theta-\frac{\mu}{2 \pi} \frac{\cos \theta}{r}\right] \\
& =V_{\infty} \cos \theta[1-\underbrace{\frac{\mu}{2 \pi V_{\infty}}}_{1 / R^{2}} \frac{1}{r^{2}}]=V_{\infty} \cos \theta\left[1-\left(\frac{R}{r}\right)^{2}\right] \\
& V_{\theta}=-\frac{\partial \psi}{\partial r}=-\left[V_{\infty}+\frac{\mu}{2 \pi r^{2}}\right] \sin \theta=-V_{\infty} \sin \theta\left[1+\left(\frac{R}{r}\right)^{2}\right]
\end{aligned}
$$

Where $R^{2}=\frac{\mu}{2 \pi V_{\infty}}$.
Stagnation Points $(\vec{V}=0)$
Set $V_{\theta}=0$.

$$
\begin{aligned}
& 0=-V_{\infty} \sin \theta\left[1+\left(\frac{R}{r}\right)^{2}\right] \\
& \sin \theta=0 \quad \text { or } \quad \theta_{s}=(0 \text { or } \pi)
\end{aligned}
$$

Now set $V_{r}=0$.

$$
\begin{aligned}
& 0=V_{\infty} \sin \theta\left[1-\left(\frac{R}{r}\right)^{2}\right] \\
& \text { For } \theta=0 \text { or } \pi, \quad \cos \theta \neq 0 \\
& \therefore\left[1-\left(\frac{R}{r}\right)^{2}\right] \equiv 0 \text { or } r^{2}=R^{2}=\frac{\mu}{2 \pi V_{\infty}}
\end{aligned}
$$

The stagnation points are located at

$$
\left(r_{s}, \theta_{s}\right) \equiv(R, 0) \text { and }(R, \pi)
$$

For Cylindrical System

$$
\left.\begin{array}{rl}
\phi & =V_{\infty} r \cos \theta\left(1+\frac{R^{2}}{r^{2}}\right) \\
& =V_{\infty} r \sin \theta\left(1-\frac{R^{2}}{r^{2}}\right) \\
V_{r} & =V_{\infty} \cos \theta\left(1-\frac{R^{2}}{r^{2}}\right) \\
V_{\theta} & =-V_{\infty} \sin \theta\left(1+\frac{R^{2}}{r^{2}}\right)
\end{array}\right\}(r \geq R)
$$

Where $R^{2}=\frac{\mu}{2 \pi V_{\infty}}$
Substitute $\left(r_{s}, \theta_{s}\right)=(R, 0)$ or (R, π) in the expression for ψ.

$$
\begin{aligned}
& \psi_{s}=0 \\
& \text { at } r=R \text { (surface of the cylinder) } \\
& V_{r}=V_{\infty} \cos \theta\left(1-\frac{R^{2}}{r^{2}}\right)=0 \text { (no flow out of the cylinder) } \\
& V_{\theta}=-2 V_{\infty} \sin \theta \\
& \left.C_{p}\right|_{r=R}=\frac{p-p_{\infty}}{\frac{1}{2} \rho_{\infty} V_{\infty}}=1-\left(\frac{V}{V_{\infty}}\right)^{2}=1-\frac{V_{r}^{2}+V_{\theta}^{2}}{V \infty^{2}}=1-\left(\frac{V_{\theta}}{V_{\infty}}\right)^{2}=1-4 \sin ^{2} \theta \\
& C_{p}(2-\mathrm{D} \text { cylinder })=1-4 \sin ^{2} \theta
\end{aligned}
$$

6.4 2-D Vortex Flow (Potential Vortex)

A 2-D point vortex is a mathematical concept that induces a velocity field given by

$$
V_{r}=0, \quad V_{\theta}=\frac{\text { const. }}{r}=\frac{C}{r}
$$

1. Check if the flow satisfies conservation of mass (Is it a physically possible flow?)

$$
\begin{aligned}
& \nabla \cdot \vec{V} \stackrel{?}{=} 0 \\
& \nabla \cdot \vec{V}=\frac{1}{r}\left[\frac{\partial\left(V_{r} r\right)}{\partial r}+\frac{\partial V_{\theta}}{\partial \theta}\right]=0 \rightarrow \quad \text { exist. } \\
& V_{r}=\frac{\partial \psi}{r \partial \theta}=0 \rightarrow \psi=g(r) \\
& V_{\theta}=-\frac{\partial \psi}{\partial r}=\frac{C}{r} \rightarrow=-C \ln r+f(\theta) \\
& \frac{\partial \psi}{\partial \theta}=f^{\prime}(\theta)=0 \\
& f(\theta)=\text { const. } \\
& \therefore \psi=-C \ln r+\text { const. }
\end{aligned}
$$

When $r \rightarrow 0, V_{\theta}=\infty$ and $\rightarrow \infty$. To eliminate the infinite velocity it is arbitrary assumed that $=0$ at $r=R$

$$
\begin{aligned}
& \therefore \psi=-C \ln R+\text { const. }=0 \\
& \text { const. }=C \ln R \\
& \quad=-C \ln \left(\frac{r}{R}\right) \text { for }(r \geq R)
\end{aligned}
$$

2. Check if the flow is irrotational

$$
\begin{aligned}
& \nabla \times \vec{V} \stackrel{?}{=} 0 \\
& \nabla \times \vec{V}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{e}_{1} & h_{2} \hat{e}_{2} & h_{3} \hat{e}_{3} \\
\frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\
h_{1} V_{1} & h_{2} V_{2} & h_{3} V_{3}
\end{array}\right|=\frac{1}{r}\left|\begin{array}{ccc}
\hat{e}_{r} & r \hat{e}_{\theta} & \hat{e}_{z} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
V_{r} & r V_{\theta} & V_{z}
\end{array}\right|
\end{aligned}
$$

Vorticity or $(\nabla \times \vec{V})$ in the $r-\theta$ plane

$$
\frac{1}{r}\left(\frac{\partial r V_{\theta}}{\partial r}-\frac{\partial V_{r}}{\partial \theta}\right)=\left(\frac{\partial C}{\partial r}-\frac{\partial 0}{\partial \theta}\right)=0 \rightarrow \phi \text { exist. }
$$

Problem:

Show that $\phi=C \theta$.

Evaluate the Constant C

Evaluate the circulation Γ around the point vortex.

1. Around closed curve $C 1$ that does not include the point vortex

$$
\Gamma_{C 1}=-\oint_{C 1} \vec{V} \cdot d \vec{l}=\iint_{S_{1}}(\underbrace{\nabla \times \vec{V}}_{0}) \cdot d \vec{A}=0
$$

2. Around $C 2$ that includes the point vortex.

$$
\begin{aligned}
\Gamma_{C 2} & =-\left[\oint_{C 2}\left(V_{r} \hat{e}_{r}+V_{\theta} \hat{e}_{\theta}\right) \cdot\left(d r \hat{e}_{r}+r d \theta \hat{e}_{\theta}\right)\right] \\
& =-\left[\oint_{C}\left(V_{r} \hat{e}_{r}+V_{\theta} \hat{e}_{\theta}\right) \cdot\left(d r \hat{e}_{r}+r d \theta \hat{e}_{\theta}\right)\right]+\left[\oint_{C 2-C}\left(V_{r} \hat{e}_{r}+V_{\theta} \hat{e}_{\theta}\right) \cdot\left(d r \hat{e}_{r}+r d \theta \hat{e}_{\theta}\right)\right] \\
& =-\left[\oint_{C}\left(V_{r} \hat{e}_{r}+V_{\theta} \hat{e}_{\theta}\right) \cdot\left(d r \hat{e}_{r}+r d \theta \hat{e}_{\theta}\right)+0\right] \\
& =-\left[\oint_{C} V_{r} d r+\oint_{C} V_{\theta} r d \theta\right]=-\left[0+\int_{0}^{2 \pi}\left(\frac{C}{r}\right) r d \theta\right]=-2 \pi C \\
\Gamma_{C 2} & =-2 \pi C \text { or }-\frac{\Gamma}{2 \pi}=C
\end{aligned}
$$

This implies that the circulation evaluated for a curve enclosing the 2-D vortex is a constant and not equal to zero.

For a potential vortex, $V_{\theta}=-\frac{\Gamma}{2 \pi r}$ and $\psi=-C \ln \frac{r}{R}$.

$$
\therefore \psi=\frac{\Gamma}{2 \pi} \ln \frac{r}{R} \text { for } r \geq R
$$

$$
=\text { const }, \text { then } \ln \frac{r}{R}=\frac{2 \pi \psi}{\Gamma}, \frac{r}{R}=e^{2 \pi \psi / \Gamma}, r=\operatorname{Re} e^{2 \pi \psi / \Gamma}
$$

Streamlines are concentric circles with center at the 2D point vortex.

$$
\begin{aligned}
& V_{r}=\frac{\partial \phi}{\partial r}, V_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}=-\frac{\Gamma}{2 \pi r} \\
& \phi=-\frac{\Gamma}{2 \pi} \theta+C \text { or } \phi=-\frac{\Gamma}{2 \pi} \theta \text { (straight lines form the origin). }
\end{aligned}
$$

A line vortex can be described as a string of rotating particles. A chain of fluid particles are spinning on their common axis and carrying around with them a swirl of particles which flow around in circles.

A cross-section of such a string of particles and its associated flow shows a spinning point 'outside' of which is streamline flow in concentric circles.

Vortices are common in nature, the difference between a real vortex as opposed to a theoretical line vortex is that the former has a core of fluid which is rotating as a 'solid', although the associated 'swirl' outside is the same as the flow 'outside' the point vortex.

6.4.1 Uniform Flow to The Right $(\alpha=0)+$ A 2-D Doublet + A 2-D Point Vortex

- As we all know, uniform flow to the right + 2-D Doublet $=$ non-lifting over a cylinder

- Uniform flow to the right +2 -D Doublet +2 -D Point Vortex $=$ Lifting flow over a cylinder

The parameters for lifting flow over a cylinder are as follow (spinning cylinder):

Quantity	Non-lifting flow over a cylinder	Vortex of Strength Γ	Combination
	$V_{\infty} r \sin \theta\left(1-\frac{R^{2}}{r^{2}}\right)$	$\frac{\Gamma}{2 \pi} \ln \frac{r}{R}$	$V_{\infty} r \sin \theta\left(1-\frac{R^{2}}{r^{2}}\right)+\frac{\Gamma}{2 \pi} \ln \frac{r}{R}$
ϕ	$V_{\infty} r \cos \theta\left(1+\frac{R^{2}}{r^{2}}\right)$	$-\frac{\Gamma}{2 \pi} \theta$	$V_{\infty} r \cos \theta\left(1+\frac{R^{2}}{r^{2}}\right)-\frac{\Gamma}{2 \pi} \theta$
V_{r}	$V_{\infty} \cos \theta\left(1-\frac{R^{2}}{r^{2}}\right)$	0	$V_{\infty} \cos \theta\left(1-\frac{R^{2}}{r^{2}}\right)$
V_{θ}	$-V_{\infty} \sin \theta\left(1+\frac{R^{2}}{r^{2}}\right)$	$-\frac{\Gamma}{2 \pi r}$	$-V_{\infty} \sin \theta\left(1+\frac{R^{2}}{r^{2}}\right)-\frac{\Gamma}{2 \pi r}$

- Flow satisfies continuity at every point $r \geq R$.
$\therefore \nabla \cdot \vec{V}=0$.
- Flow satisfies irrotationality at every point $r \geq R$.
$\therefore \nabla \times \vec{V}=0$.

Determine the stagnation points for the combined flow
At the stagnation points, $\vec{V}=0, V_{r}=0=V_{\theta}$. If we set $V_{r}=0$, we get $r_{s}=R$ or $\theta_{s}= \pm \frac{\pi}{2}$,
$\underline{\operatorname{Case}(1):} r=R_{s}=R$

$$
\begin{gathered}
V_{\theta}=-V_{\infty} \sin \theta_{s}(1+1)-\frac{\Gamma}{2 \pi R}=0 \\
\sin \theta_{s}=-\frac{\Gamma}{4 \pi R V_{\infty}} \leq 0
\end{gathered}
$$

Because $\Gamma>0,4 \pi R V_{\infty}>0, \frac{\Gamma}{4 \pi V_{\infty}}>0$. When $\frac{\Gamma}{4 \pi V_{\infty}}<R, \theta_{s}$ has one value in the third quadrant and one in the fourth quadrant that will satisfy the above relation.
The coordinates of the stagnation point are:

$$
\begin{gathered}
y_{s}=R \sin \theta_{s}=-\frac{\Gamma}{4 \pi V_{\infty}} \\
x_{s}= \pm \sqrt{R^{2}-y_{s}^{2}}= \pm \sqrt{R^{2}-\left(\frac{\Gamma}{4 \pi V_{\infty}}\right)^{2}}
\end{gathered}
$$

When $\frac{\Gamma}{4 \pi V_{\infty}}=R$, there is only one solution. However, the method fails when $\frac{\Gamma}{4 \pi V_{\infty}}>R$.

$$
\Gamma=0
$$

$$
0<\frac{\Gamma}{4 \pi V_{\infty}}<R
$$

$$
\frac{\Gamma}{4 \pi V_{\infty}}=R
$$

$\underline{\text { Case(2) }: ~} \theta= \pm \frac{\pi}{2}$

$$
\underline{\text { Case }(2 a)}: \quad \theta=\frac{\pi}{2}, r=r_{s}
$$

$$
\begin{gathered}
V_{r}=V_{\infty} \cos \left(\frac{\pi}{2}\right)\left(1-\frac{R^{2}}{r^{2}}\right)=0 \\
V_{\theta}=-V_{\infty} \sin \left(\frac{\pi}{2}\right)\left(1+\frac{R^{2}}{r^{2}}\right)-\frac{\Gamma}{2 \pi r}=0 \\
r_{s}^{2}+\frac{\Gamma}{2 \pi V_{\infty}} r_{s}+R^{2}=0 \\
r_{s}=-\frac{\Gamma}{4 \pi V_{\infty}} \pm \sqrt{\left(\frac{\Gamma}{4 \pi V_{\infty}}\right)^{2}-R^{2}}
\end{gathered}
$$

When $\frac{\Gamma}{4 \pi V_{\infty}}>R, r_{s}$ results in negative number for all cases. Because both roots are negative, the solution is impossible.

$$
\begin{aligned}
& \underline{\operatorname{Case}(2 b)}: \theta=-\frac{\pi}{2}, r=r_{s} \\
& \qquad \begin{array}{r}
V_{r}=V_{\infty} \cos \left(-\frac{\pi}{2}\right)\left(1-\frac{R^{2}}{r^{2}}\right)=0 \\
V_{\theta}=-V_{\infty} \sin \left(-\frac{\pi}{2}\right)\left(1+\frac{R^{2}}{r^{2}}\right)-\frac{\Gamma}{2 \pi r}=0 \\
\\
r_{s}^{2}-\frac{\Gamma}{2 \pi V_{\infty}} r_{s}+R^{2}=0 \\
r_{s}=\frac{\Gamma}{4 \pi V_{\infty}} \pm \sqrt{\left(\frac{\Gamma}{4 \pi V_{\infty}}\right)^{2}-R^{2}}
\end{array}
\end{aligned}
$$

When $\frac{\Gamma}{4 \pi V_{\infty}}>R$, we get $r_{s}=\frac{\Gamma}{4 \pi V_{\infty}}-\sqrt{\left(\frac{\Gamma}{4 \pi V_{\infty}}\right)^{2}-R^{2}}<R$. So we can't use this solution.
However, $\theta_{s}=-\frac{\pi}{2}$ and $\frac{\Gamma}{4 \pi V_{\infty}}>R$ is an acceptable solution when $r_{s}=\frac{\Gamma}{4 \pi V_{\infty}} \pm \sqrt{\left(\frac{\Gamma}{4 \pi V_{\infty}}\right)^{2}-R^{2}}>R$

Force on a Cylinder with Circulation in a Uniform Steady Flow

Force on an elemental distance on the surface of the cylinder:

$$
\begin{gathered}
d \vec{F}=-p_{b} R d \theta \hat{e_{r}} \\
d \vec{F}=-p_{b} R d \theta(\cos \theta \hat{i}+\sin \theta \hat{j}) \\
\vec{F}=\int_{0}^{2 \pi}-p_{b} R d \theta(\cos \theta \hat{i}+\sin \theta \hat{j})
\end{gathered}
$$

The drag per unit span is

$$
D^{\prime}=\vec{F} \cdot \hat{j}=\int_{0}^{2 \pi}-p_{b} \cos \theta R d \theta
$$

The lift per unit span is

$$
L^{\prime}=\vec{F} \cdot \hat{i}=\int_{0}^{2 \pi}-p_{b} \sin \theta R d \theta
$$

As we know, in incompressible flow the total pressure $p_{o}=p+\frac{\rho V^{2}}{2}$, which is a constant throughout the flow. $p_{b}=p_{o}-\frac{\rho\left(V_{r}^{2}+V_{\theta}^{2}\right)}{2}$. Besides, there is no flow normal to the surface, $V_{r}=0$.

$$
\begin{gathered}
p_{b}=p_{o}-\frac{\rho}{2} V_{\theta}^{2} \\
p_{b}=p_{o}-\frac{\rho}{2}\left(-2 V_{\infty} \sin \theta-\frac{\Gamma}{2 \pi R}\right)^{2} \\
p_{b}=p_{o}-2 \rho V_{\infty}^{2}(\sin \theta)^{2}-\rho V_{\infty} \sin \theta \frac{\Gamma}{R \pi}-\frac{\rho \Gamma^{2}}{8 \pi^{2} R^{2}}
\end{gathered}
$$

$$
\therefore D^{\prime}=R \int_{0}^{2 \pi}-\left(p_{o}-2 \rho V_{\infty}{ }^{2}(\sin \theta)^{2}-\rho V_{\infty} \sin \theta \frac{\Gamma}{R \pi}-\frac{\rho \Gamma^{2}}{8 \pi^{2} R^{2}}\right) \cos \theta d \theta=0
$$

which means that d'Alembert's paradox still prevails.

$$
L^{\prime}=R \int_{0}^{2 \pi}-\left(p_{o}-2 \rho V_{\infty}^{2}(\sin \theta)^{2}-\rho V_{\infty} \sin \theta \frac{\Gamma}{R \pi}-\frac{\rho \Gamma^{2}}{8 \pi^{2} R^{2}}\right) \sin \theta d \theta=\rho V_{\infty} \Gamma
$$

which is the Kutta-Joukowski theorem.
In inviscid, incompressible flow, the resultant force per unit span acting on a 2-D body of any cross section is equal to $\rho V_{\infty} \Gamma$ and acts perpendicular to V_{∞}.

