
Chapter 6

Basic flows

6.1 Uniform Flow at An Angle α

Given velocity field is:
~V = (V∞ cosα, V∞ sinα)

Check if conservation of mass is satisfied first to test if it is a physically possible flow?

∇ · ~V
?
= 0

∂u

∂x
+
∂v

∂y

?
= 0

Since u and v are both constants, ∇ · ~V = 0
Therefore ψ exists. From conservation of mass,

u =
∂ψ

∂y
and v = −

∂ψ

∂x

u = V∞ cosα =
∂ψ

∂y

= V∞ cosα y + f(x)

∂ψ

∂x
= −v = 0 + f ′(x)

f ′(x) = −V∞ sinα or f(x) = −V∞ sinα x+ g(y)

= −V∞ sinα x+ V∞ cosα y

= const. = −V∞ sinα x+ V∞ cosα y

V∞
= − sinα x+ cosα y

V∞ cosα
= − tanα x+ y

Equation of streamlines:

y = tanα x+
V∞ cosα

Check if the given flow is a potential flow?

∇× ~V
?
= 0

∂v

∂x
−
∂u

∂y

?
= 0
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CHAPTER 6. BASIC FLOWS 6.1. UNIFORM FLOW AT AN ANGLE α

Since V∞ and α are constant throughtout the flow, ∇× ~V = 0
Therefore φ exists and ~V = ∇φ.

~V = ∇φ =
∂φ

∂x
ı̂+

∂φ

∂y
̂

∂φ

∂x
= V∞ cosα = u

φ = V∞ cosα x+ f(y)

∂φ

∂y
= 0 + f ′(y) = v

f ′(y) = V∞ sinα or f(y) = V∞ sinα y + f(x)

φ = V∞ cosα x+ V∞ sinα y (uniform flow at an angle α)

φ = const. = V∞ cosα x+ V∞ sinα y

φ

V∞ sinα
=

x

tanα
+ y

Equation of Equipotential lines:

y = −
1

tanα
x+

φ

V∞ sinα

φ constant lines are orthogonal to ψ constant lines.

6.1.1 Γ: Contour Integral over a Close CurveC

8

V 8

V 8

et es

V

Y

s

h

1

2

3

4

X

Γ = −

∮

~V · d~l

= −





2∫

1

~V · d~l +

3∫

2

~V · d~l +

4∫

3

~V · d~l +

1∫

4

~V · d~l





= −





2∫

1

(V∞ês) · (ds ês) +

3∫

2

(V∞ês) · (dh êt) +

4∫

3

(V∞ês) · (−ds ês) +

1∫

4

(V∞ês) · (−dh êt)





= − [(V∞s) + 0 + (−V∞s) + 0] ≡ 0
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CHAPTER 6. BASIC FLOWS 6.2. 2-D SOURCE (LINE SOURCE)

6.2 2-D Source (Line Source)

Definition: A source is a point from which fluid issues along radial lines. Streamlines are straight lines
emanating from a central point. Velocity varies inversely with distance from the origin.

From the definition of the source the velocity vector can be written as:

~V = vr êr

where vr ∝
1
r or vr = c

r , and vθ = 0 where C is a constant.

Check if the assumed flow is physically possible.

~V =
c

r
êr + 0êθ

∇ · ~V
?
= 0

∇ · ~V =
1

r

[
∂(rvr)

∂r
+
∂(vθ)

∂θ

]

=
1

r

[
∂(c)

∂r
+
∂(0)

∂θ

]

≡ 0

Flow is physically possible and ψ exists.

6.2.1 Evaluation of c

From mass conservation for a steady flow we know
∫

dṁ = 0

From continuity the mass of fluid per unit time crossing any circle centered at the source is a constant and
equal to the mass of fluid issuing per unit time from the source. Consider a cylinder centered on the source.
There is mass flowing out only from the sides of the cylinder.

d ~Ar = hθhzdθ dzêr = r dθ dzêr

ṁ =

L∫

0

2π∫

0

ρ~V · d ~A =

L∫

0

2π∫

0

ρ(Vr êr) · (r dθ dz)êr

It is a 2-D flow and hence the integral can be reduced to:

ṁ = L

2π∫

0

ρVr r dθ

Vr is not a function of θ. Vr is only a function of r.

ṁ = L

2π∫

0

ρ
( c

r

)

r dθ = ρ L c 2π
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CHAPTER 6. BASIC FLOWS 6.2. 2-D SOURCE (LINE SOURCE)

Z

X

Y

L

Cylinder centered at a source

Volume flow per second is:
ṁ

ρ
= c 2π L

Define K as the source strength. It is physically the rate of volume flow from the source per unit depth into
the page (2-D).

K = 2πc or c =
K

2π

then the velocity becomes:

vr =
K

2πr

Since ∇ · ~V = 0 is satisfied, the flow is physically possible and from the definition of ψ in polar coordinates,
can be found.

vr =
∂ψ

r∂θ
and vθ = −

∂ψ

∂r
∂ψ

r∂θ
=

K

2πr
∂ψ

∂θ
=
K

2π

=
K

2π
θ + f(r)

∂ψ

∂r
= −vθ = 0 + f ′(r) = 0

f(r) = const.

=
K

2π
θ

Since the source strength, K is a constant, ψ constant lines are radial lines.

=
K

2π
θ = const.

Is ∇× ~V
?
= 0.

∇× ~V =
1

r

êr rêθ êz
∂
∂r

∂
∂θ

∂
∂z

vr rvθ vz

=
1

r

[
∂(rvθ)

∂r
−
∂(vr)

∂θ

]

êz ≡ 0
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therefore φ exists.

vr =
∂φ

∂r
=

K

2πr
and vθ =

1

r

∂φ

∂θ
= 0

φ =
K

2π
ln r + g(θ)

∂φ

∂θ
= 0 + g′(θ) = 0

g(θ) = const.

... φ =
K

2π
ln r

6.3 Combination of Potential Flows

Uniform flow and source/sink satisfy Laplace equation and therefore superposition is possible.

6.3.1 Combination of a Uniform Flow to The Right (α = 0) and A Source at
The Origin

Y

X =

Y

X+

Quantity Uniform flow Source/Sink Combination
~V V∞ ı̂ ± K

2πr êr V∞ ı̂±
K

2πr êr
φ V∞x ± K

2πr ln r V∞x± K
2πr ln r

V∞y ± K
2πrθ V∞y ±

K
2πr θ

Stagnation Point:

At the stagnation point, ~V ≡ 0

vr = V∞ cos θ +
K

2πr
= 0

vθ = −V∞ sin θ = 0

Solve for θ and r at the stagnation point to get (rstag , θstag). Proceed to find ψstag to get the shape of the
body. From vθ = 0:

sin θ = 0

θ = 0 or ± π
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Case 1: θs = 0. Sove for rs from vr=0

vr = V∞ cos θ +
K

2πr
= 0

if θ = θs = 0

cos θs = 1

vr = V∞ +
K

2πrs
= 0

or rs = −
K

2πV∞

Impossible solution as rs < 0; (... K and V∞ are positive)
Case 2: θs = ±π.

vr = −V∞ +
K

2πrs
= 0

rs =
K

2πV∞

θs = +π for the upper half of the body
θs = −π for the lower half of the body
Coordinates of the stagnation point:

(rs, θs) =

(
K

2πV∞
,±π

)

Body Shape (Stagnation Streamline):

A general expression for the streamfunction for the combined flow is:

= V∞r sin θ +
K

2π
θ

Find ψs (= the body shape) by substituting (rs, θs).

ψs = V∞r sin(±π) +
K

2π
(±π) = ±

K

2
= const.

In Cartesian coordinate, the general expression for the body streamfunction becomes:

±
K

2
= V∞y +

K

2π
tan−1

(y

x

)

K

2π
tan−1

(y

x

)

=

(

±
K

2
− V∞y

)

tan−1
(y

x

)

=

(

±π −
2πV∞y

K

)

y

x
= tan

(

±π −
2πV∞y

K

)

x =
y

tan
(

±π − 2πV∞y
K

)

To find maximum y value, consider ψ = K/2 (upper half of the body).

K

2
= V∞y +

K

2π
tan−1

(y

x

)

ymax = y@x=∞ =
K

2V∞
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Y

P(x,y)

θ θ θ21

(-b,0) (b,0)
X

6.3.2 Combined Flow of a Source at (−b, 0) and a Sink at (b, 0)

=
K

2π
θ1 −

K

2π
θ2

where θ1 and θ2 are measured from the center of the source and sink respectively.

θ1 = tan−1

(
y

x+ b

)

, θ2 = tan−1

(
y

x− b

)

θ2 − θ1 = tan−1

(
y

x− b

)

− tan−1

(
y

x+ b

)

θ2 − θ1 = tan−1

(
2by

x2 + y2 − b2

)

= ψ1 + ψ2 =
K

2π
(θ1 − θ2)

θ1 − θ2 = − tan−1

(
2by

x2 + y2 − b2

)

ψsource+sink = −
K

2π
tan−1

(
2by

x2 + y2 − b2

)

2πψ

K
= − tan−1

(
2by

x2 + y2 − b2

)

tan

(
2π

K

)

= −
2by

x2 + y2 − b2

x2 + y2 + 2by cot

(
2π

K

)

= b2

(x− 0)2 +

(

y + b cot

[
2π

K

])2

= b2
(

1 + cot2
[
2π

K

])

(x− 0)2 +

(

y + b cot

[
2π

K

])2

= b2 csc2

[
2π

K

]

Equation of a circle with center at
(

0,±b cot 2πψ
K

)

and radius of
(

b csc 2πψ
K

)

. When y = 0, x = ±b. All

streamlines go through ±b.

6.3.3 Uniform Flow to The Right+Source (−b, 0)+ Sink (b, 0) (Rankine oval)

• Source of strength K placed at (−b, 0)

• Sink of strength K placed at (b, 0)

• Uniform flow to the right (α = 0)
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= V∞r sin θ +
K

2π
θ1 −

K

2π
θ2

Problem:

Analyze Rankine oval.

6.3.4 2-D Doublet

Definition: A doublet is obtained when a source and sink of equal strength approach each other so that the
product of their strength and the distance apart remains a constant.

B = K(2b) = constant

ψsource+sink = −
K

2π
tan−1

(
2by

x2 + y2 − b2

)

= −
2bK

4π

tan−1
(

2by
x2+y2−b2

)

b

lim
2bK→µ

ψsource+sink = ψdoublet = −
µ

4π
lim
b→0




tan−1

(
2by

x2+y2
−b2

)

b





Using L’Hospital’s rule:

ψdoublet = −
µ

4π
lim
b→0








d
db

2by

x2+y2
−b2

1+
“

2by

x2+y2
−b2

”

2

db
db








= −
µ

4π
lim
b→0






(x2+y2
−b2)(2y)−(2by)(−2b)
(x2+y2

−b2)2

1 +
(

2by
x2+y2

−b2

)2




 = −

µ

4π

(
2y

x2 + y2

)

ψdoublet = −
µ

2π

sin θ

r

Streamlines

x2 + y2 +
µy

2πψ
= 0

(x− 0)2 +

(

y +
µ

4πψ

)2

=

(
µ

4πψ

)2
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Streamlines are circles centerd on the y-axis a distance − µ
4πψ from the x-axis with a radius of

∣
∣
∣
µ

4πψ

∣
∣
∣. All

circles pass through the origin.

Problem:

Show that φ = µ
2π

cos θ
r for a 2-D doublet.

6.3.5 Uniform Flow to The Right + A 2-D Doublet

Quantity Uniform flow 2-D doublet Combination
~V V∞ ı̂
φ V∞x

µ
2π

cos θ
r V∞x+ µ

2π
cos θ
r

V∞y − µ
2π

sin θ
r V∞y −

µ
2π

sin θ
r

Vr =
1

r

∂ψ

∂θ
=

1

r

[

V∞r cos θ −
µ

2π

cos θ

r

]

= V∞ cos θ








1 −
µ

2πV∞
︸ ︷︷ ︸

1/R2

1

r2








= V∞ cos θ

[

1 −

(
R

r

)2
]

Vθ = −
∂ψ

∂r
= −

[

V∞ +
µ

2πr2

]

sin θ = −V∞ sin θ

[

1 +

(
R

r

)2
]

Where R2 = µ
2πV∞

.

Stagnation Points (~V = 0)

Set Vθ = 0.

0 = −V∞ sin θ

[

1 +

(
R

r

)2
]

sin θ = 0 or θs = (0 or π)

Now set Vr = 0.

0 = V∞ sin θ

[

1 −

(
R

r

)2
]

For θ = 0 or π, cos θ 6= 0

...

[

1 −

(
R

r

)2
]

≡ 0 or r2 = R2 =
µ

2πV∞
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The stagnation points are located at

(rs, θs) ≡ (R, 0) and (R, π)

For Cylindrical System

φ = V∞r cos θ

(

1 +
R2

r2

)

= V∞r sin θ

(

1−
R2

r2

)

Vr = V∞ cos θ

(

1 −
R2

r2

)

Vθ = −V∞ sin θ

(

1 +
R2

r2

)







(r ≥ R)

Where R2 =
µ

2πV∞
Substitute (rs, θs) = (R, 0) or (R, π) in the expression for ψ.

ψs = 0

at r = R (surface of the cylinder)

Vr = V∞ cos θ

(

1 −
R2

r2

)

= 0 (no flow out of the cylinder)

Vθ = −2V∞ sin θ

Cp|r=R =
p− p∞
1
2ρ∞V∞

= 1 −

(
V

V∞

)2

= 1 −
V 2
r + V 2

θ

V∞2
= 1 −

(
Vθ
V∞

)2

= 1 − 4 sin2 θ

Cp (2-D cylinder) = 1 − 4 sin2 θ

6.4 2-D Vortex Flow (Potential Vortex)

A 2-D point vortex is a mathematical concept that induces a velocity field given by

Vr = 0, Vθ =
const.

r
=
C

r

1. Check if the flow satisfies conservation of mass (Is it a physically possible flow?)

∇ · ~V
?
= 0

∇ · ~V =
1

r

[
∂(Vrr)

∂r
+
∂Vθ
∂θ

]

= 0 → exist.

Vr =
∂ψ

r∂θ
= 0 → ψ = g(r)

Vθ = −
∂ψ

∂r
=
C

r
→ = −C ln r + f(θ)

∂ψ

∂θ
= f ′(θ) = 0

f(θ) = const.
... ψ = −C ln r + const.
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When r → 0, Vθ = ∞ and → ∞. To eliminate the infinite velocity it is arbitrary assumed that
= 0 at r = R

... ψ = −C lnR+ const. = 0

const. = C lnR

= −C ln
( r

R

)

for (r ≥ R)

2. Check if the flow is irrotational

∇× ~V
?
= 0

∇× ~V =
1

h1h2h3

∣
∣
∣
∣
∣
∣

h1ê1 h2ê2 h3ê3
∂
∂q1

∂
∂q2

∂
∂q3

h1V1 h2V2 h3V3

∣
∣
∣
∣
∣
∣

=
1

r

∣
∣
∣
∣
∣
∣

êr rêθ êz
∂
∂r

∂
∂θ

∂
∂z

Vr rVθ Vz

∣
∣
∣
∣
∣
∣

Vorticity or (∇× ~V ) in the r − θ plane

1

r

(
∂rVθ
∂r

−
∂Vr
∂θ

)

=

(
∂C

∂r
−
∂0

∂θ

)

= 0 → φ exist.

Problem:

Show that φ = −Cθ.

Evaluate the Constant C

Evaluate the circulation Γ around the point vortex.

C2

C
C1

1. Around closed curve C1 that does not include the point vortex

ΓC1 = −

∮

C1

~V · d~l =

∫

S1

∫

(∇× ~V
︸ ︷︷ ︸

0

) · d ~A = 0
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2. Around C2 that includes the point vortex.

ΓC2 = −





∮

C2

(Vr êr + Vθ êθ) · (dr êr + r dθêθ)





= −





∮

C

(Vr êr + Vθ êθ) · (dr êr + r dθêθ)



 +





∮

C2−C

(Vr êr + Vθ êθ) · (dr êr + r dθêθ)





= −





∮

C

(Vr êr + Vθ êθ) · (dr êr + r dθêθ) + 0





= −





∮

C

Vrdr +

∮

C

Vθr dθ



 = −



0 +

2π∫

0

(
C

r

)

r dθ



 = −2πC

ΓC2 = −2πC or −
Γ

2π
= C

This implies that the circulation evaluated for a curve enclosing the 2-D vortex is a constant and not
equal to zero.

For a potential vortex, Vθ = − Γ
2πr and ψ = −C ln r

R .

... ψ =
Γ

2π
ln
r

R
for r ≥ R

= const , then ln r
R = 2πψ

Γ , r
R = e2πψ/Γ, r = Re2πψ/Γ

Streamlines are concentric circles with center at the 2D point vortex.

Vr = ∂φ
∂r , Vθ = 1

r
∂φ
∂θ = − Γ

2πr

φ = − Γ
2π θ + C or φ = − Γ

2π θ (straight lines form the origin).

A line vortex can be described as a string of rotating particles. A chain of fluid particles are spinning on
their common axis and carrying around with them a swirl of particles which flow around in circles.

A cross-section of such a string of particles and its associated flow shows a spinning point ’outside’ of which
is streamline flow in concentric circles.

Vortices are common in nature, the difference between a real vortex as opposed to a theoretical line vortex
is that the former has a core of fluid which is rotating as a ’solid’, although the associated ’swirl’ outside is
the same as the flow ’outside’ the point vortex.
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6.4.1 Uniform Flow to The Right (α = 0) + A 2-D Doublet + A 2-D Point
Vortex

• As we all know, uniform flow to the right + 2-D Doublet = non-lifting over a cylinder

• Uniform flow to the right + 2-D Doublet + 2-D Point Vortex = Lifting flow over a cylinder

The parameters for lifting flow over a cylinder are as follow (spinning cylinder):

Quantity Non-lifting flow over a cylinder Vortex of Strength Γ Combination

V∞r sin θ(1 − R2

r2 ) Γ
2π ln r

R V∞r sin θ(1 − R2

r2 ) + Γ
2π ln r

R

φ V∞r cos θ(1 + R2

r2 ) − Γ
2π θ V∞r cos θ(1 + R2

r2 ) − Γ
2π θ

Vr V∞ cos θ(1 − R2

r2 ) 0 V∞ cos θ(1 − R2

r2 )

Vθ −V∞ sin θ(1 + R2

r2 ) − Γ
2πr −V∞ sin θ(1 + R2

r2 ) − Γ
2πr

• Flow satisfies continuity at every point r ≥ R.
... ∇ · ~V = 0.

• Flow satisfies irrotationality at every point r ≥ R.
... ∇× ~V = 0.

Determine the stagnation points for the combined flow

At the stagnation points, ~V = 0,Vr = 0 = Vθ. If we set Vr = 0, we get rs = R or θs = ±π
2 ,

Case(1): r = Rs = R

Vθ = −V∞ sin θs(1 + 1) −
Γ

2πR
= 0

sinθs = −
Γ

4πRV∞
≤ 0
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Because Γ > 0, 4πRV∞ > 0, Γ
4πV∞

> 0. When Γ
4πV∞

< R, θs has one value in the third quadrant and one in
the fourth quadrant that will satisfy the above relation.
The coordinates of the stagnation point are:

ys = Rsinθs = −
Γ

4πV∞

xs = ±
√

R2 − y2
s = ±

√

R2 − (
Γ

4πV∞
)2

When Γ
4πV∞

= R, there is only one solution. However, the method fails when Γ
4πV∞

> R.

Γ = 0 0 < Γ
4πV∞

< R Γ
4πV∞

= R

Case(2): θ = ±π
2

Case(2a): θ = π
2 , r = rs

Vr = V∞ cos(
π

2
)(1 −

R2

r2
) = 0

Vθ = −V∞ sin(
π

2
)(1 +

R2

r2
) −

Γ

2πr
= 0

rs
2 +

Γ

2πV∞
rs +R2 = 0

rs = −
Γ

4πV∞
±

√

(
Γ

4πV∞
)2 −R2

When Γ
4πV∞

> R, rs results in negative number for all cases. Because both roots are negative, the solution
is impossible.

Case(2b) : θ = −π
2 , r = rs

Vr = V∞ cos(−
π

2
)(1 −

R2

r2
) = 0

Vθ = −V∞ sin(−
π

2
)(1 +

R2

r2
) −

Γ

2πr
= 0

rs
2 −

Γ

2πV∞
rs +R2 = 0

rs =
Γ

4πV∞
±

√

(
Γ

4πV∞
)2 −R2
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When Γ
4πV∞

> R, we get rs = Γ
4πV∞

−
√

( Γ
4πV∞

)2 −R2 < R. So we can’t use this solution.

However, θs = −π
2 and Γ

4πV∞

> R is an acceptable solution when rs = Γ
4πV∞

±
√

( Γ
4πV∞

)2 −R2 > R

Force on a Cylinder with Circulation in a Uniform Steady Flow

Force on an elemental distance on the surface of the cylinder:

d~F = −pbRdθêr

d~F = −pbRdθ(cos θî+ sin θĵ)

~F =

2π∫

0

−pbRdθ(cos θî+ sin θĵ)

The drag per unit span is

D′ = ~F · ĵ =

2π∫

0

−pbcosθRdθ

The lift per unit span is

L′ = ~F · î =

2π∫

0

−pbsinθRdθ

As we know, in incompressible flow the total pressure po = p+ ρV 2

2 , which is a constant throughout the flow.

pb = po −
ρ(V 2

r +V 2
θ )

2 . Besides, there is no flow normal to the surface, Vr = 0.

pb = po −
ρ

2
V 2
θ

pb = po −
ρ

2
(−2V∞ sin θ −

Γ

2πR
)2

pb = po − 2ρV∞
2(sin θ)2 − ρV∞sinθ

Γ

Rπ
−

ρΓ2

8π2R2
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... D′ = R

2π∫

0

−(po − 2ρV∞
2(sin θ)2 − ρV∞sinθ

Γ

Rπ
−

ρΓ2

8π2R2
)cosθdθ = 0

which means that d’Alembert’s paradox still prevails.

L′ = R

2π∫

0

−(po − 2ρV∞
2(sin θ)2 − ρV∞sinθ

Γ

Rπ
−

ρΓ2

8π2R2
)sinθdθ = ρV∞Γ

which is the Kutta-Joukowski theorem.

In inviscid, incompressible flow, the resultant force per unit span acting on a 2-D body of any cross section
is equal to ρV∞Γ and acts perpendicular to V∞.

59


	Text1: 
	Text3: 
	Text4: 
	Text5: 
	Text6: 


