Chapter 6

Basic flows

6.1 Uniform Flow at An Angle α

Given velocity field is:

$$\vec{V} = (V_{\infty} \cos \alpha, V_{\infty} \sin \alpha)$$

Check if conservation of mass is satisfied first to test if it is a physically possible flow?

$$\nabla \cdot \vec{V} \stackrel{?}{=} 0$$
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \stackrel{?}{=} 0$$

Since u and v are both constants, $\nabla \cdot \vec{V} = 0$ Therefore ψ exists. From conservation of mass,

$$u = \frac{\partial \psi}{\partial y} \text{ and } v = -\frac{\partial \psi}{\partial x}$$

$$u = V_{\infty} \cos \alpha = \frac{\partial \psi}{\partial y}$$

$$= V_{\infty} \cos \alpha \ y + f(x)$$

$$\frac{\partial \psi}{\partial x} = -v = 0 + f'(x)$$

$$f'(x) = -V_{\infty} \sin \alpha \ or \ f(x) = -V_{\infty} \sin \alpha \ x + g(y)$$

$$= -V_{\infty} \sin \alpha \ x + V_{\infty} \cos \alpha \ y$$

$$= const. = -V_{\infty} \sin \alpha \ x + V_{\infty} \cos \alpha \ y$$

$$\frac{\partial \psi}{\partial x} = -\sin \alpha \ x + \cos \alpha \ y$$

Equation of streamlines:

$$y = tan\alpha \ x + \frac{1}{V_{\infty}\cos\alpha}$$

Check if the given flow is a potential flow?

$$\nabla \times \vec{V} \stackrel{?}{=} 0$$
$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \stackrel{?}{=} 0$$

Since V_{∞} and α are constant throughtout the flow, $\nabla \times \vec{V} = 0$ Therefore ϕ exists and $\vec{V} = \nabla \phi$.

$$\vec{V} = \nabla \phi = \frac{\partial \phi}{\partial x} \hat{i} + \frac{\partial \phi}{\partial y} \hat{j}$$

$$\frac{\partial \phi}{\partial x} = V_{\infty} \cos \alpha = u$$

$$\phi = V_{\infty} \cos \alpha \ x + f(y)$$

$$\frac{\partial \phi}{\partial y} = 0 + f'(y) = v$$

$$f'(y) = V_{\infty} \sin \alpha \ or \ f(y) = V_{\infty} \sin \alpha \ y + f(x)$$

$$\phi = V_{\infty} \cos \alpha \ x + V_{\infty} \sin \alpha \ y \quad (\text{uniform flow at an angle } \alpha)$$

$$\phi = const. = V_{\infty} \cos \alpha \ x + V_{\infty} \sin \alpha \ y$$

$$\frac{\phi}{V_{\infty} \sin \alpha} = \frac{x}{\tan \alpha} + y$$

Equation of Equipotential lines:

$$y = -\frac{1}{\tan\alpha}x + \frac{\phi}{V_{\infty}\sin\alpha}$$

 ϕ constant lines are orthogonal to ψ constant lines.

6.1.1 Γ : Contour Integral over a Close CurveC

$$\begin{split} \Gamma &= -\oint \vec{V} \cdot d\vec{l} \\ &= -\left[\int_{1}^{2} \vec{V} \cdot d\vec{l} + \int_{2}^{3} \vec{V} \cdot d\vec{l} + \int_{3}^{4} \vec{V} \cdot d\vec{l} + \int_{4}^{1} \vec{V} \cdot d\vec{l}\right] \\ &= -\left[\int_{1}^{2} (V_{\infty} \hat{e}_{s}) \cdot (ds \ \hat{e}_{s}) + \int_{2}^{3} (V_{\infty} \hat{e}_{s}) \cdot (dh \ \hat{e}_{t}) + \int_{3}^{4} (V_{\infty} \hat{e}_{s}) \cdot (-ds \ \hat{e}_{s}) + \int_{4}^{1} (V_{\infty} \hat{e}_{s}) \cdot (-dh \ \hat{e}_{t})\right] \\ &= -\left[(V_{\infty} s) + 0 + (-V_{\infty} s) + 0\right] \equiv 0 \end{split}$$

6.2 2-D Source (Line Source)

Definition: A source is a point from which fluid issues along radial lines. Streamlines are straight lines emanating from a central point. Velocity varies inversely with distance from the origin.

From the definition of the source the velocity vector can be written as:

$$\vec{V} = v_r \hat{e}_r$$

where $v_r \propto \frac{1}{r}$ or $v_r = \frac{c}{r}$, and $v_{\theta} = 0$ where C is a constant. Check if the assumed flow is physically possible.

$$\vec{V} = \frac{c}{r}\hat{e}_r + 0\hat{e}_\theta$$
$$\nabla \cdot \vec{V} \stackrel{?}{=} 0$$
$$\nabla \cdot \vec{V} = \frac{1}{r} \left[\frac{\partial(rv_r)}{\partial r} + \frac{\partial(v_\theta)}{\partial \theta} \right] = \frac{1}{r} \left[\frac{\partial(c)}{\partial r} + \frac{\partial(0)}{\partial \theta} \right] \equiv 0$$

Flow is physically possible and ψ exists.

6.2.1 Evaluation of c

From mass conservation for a steady flow we know

$$\int d\dot{m} = 0$$

From continuity the mass of fluid per unit time crossing any circle centered at the source is a constant and equal to the mass of fluid issuing per unit time from the source. Consider a cylinder centered on the source. There is mass flowing out only from the sides of the cylinder.

$$d\vec{A}_r = h_\theta h_z d\theta \ dz \hat{e}_r = r \ d\theta \ dz \hat{e}_r$$
$$\dot{m} = \int_0^L \int_0^{2\pi} \rho \vec{V} \cdot d\vec{A} = \int_0^L \int_0^{2\pi} \rho (V_r \ \hat{e}_r) \cdot (r \ d\theta \ dz) \hat{e}_r$$

It is a 2-D flow and hence the integral can be reduced to:

$$\dot{m} = L \int_{0}^{2\pi} \rho V_r \ r \ d\theta$$

 V_r is not a function of θ . V_r is only a function of r.

$$\dot{m} = L \int_{0}^{2\pi} \rho\left(\frac{c}{r}\right) r \ d\theta = \rho \ L \ c \ 2\pi$$

Cylinder centered at a source

Volume flow per second is:

$$\frac{\dot{m}}{\rho} = c \ 2\pi \ I$$

Define K as the source strength. It is physically the rate of volume flow from the source per unit depth into the page (2-D).

$$K = 2\pi c \quad or \quad c = \frac{K}{2\pi}$$

then the velocity becomes:

$$v_r = \frac{K}{2\pi r}$$

Since $\nabla \cdot \vec{V} = 0$ is satisfied, the flow is physically possible and from the definition of ψ in polar coordinates, can be found.

$$v_r = \frac{\partial \psi}{r\partial \theta} \quad and \quad v_\theta = -\frac{\partial \psi}{\partial r}$$
$$\frac{\partial \psi}{r\partial \theta} = \frac{K}{2\pi r}$$
$$\frac{\partial \psi}{\partial \theta} = \frac{K}{2\pi}$$
$$= \frac{K}{2\pi}\theta + f(r)$$
$$\frac{\partial \psi}{\partial r} = -v_\theta = 0 + f'(r) = 0$$
$$f(r) = const.$$
$$= \frac{K}{2\pi}\theta$$

Since the source strength, K is a constant, ψ constant lines are radial lines.

$$=\frac{K}{2\pi}\theta=const.$$

Is $\nabla \times \vec{V} \stackrel{?}{=} 0$.

$$\nabla \times \vec{V} = \frac{1}{r} \begin{vmatrix} \hat{e}_r & r\hat{e}_\theta & \hat{e}_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ v_r & rv_\theta & v_z \end{vmatrix} = \frac{1}{r} \left[\frac{\partial(rv_\theta)}{\partial r} - \frac{\partial(v_r)}{\partial \theta} \right] \hat{e}_z \equiv 0$$

therefore ϕ exists.

$$v_r = \frac{\partial \phi}{\partial r} = \frac{K}{2\pi r} \quad and \quad v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = 0$$

$$\phi = \frac{K}{2\pi} \ln r + g(\theta)$$

$$\frac{\partial \phi}{\partial \theta} = 0 + g'(\theta) = 0$$

$$g(\theta) = const.$$

$$\therefore \phi = \frac{K}{2\pi} \ln r$$

6.3 Combination of Potential Flows

Uniform flow and source/sink satisfy Laplace equation and therefore superposition is possible.

6.3.1 Combination of a Uniform Flow to The Right ($\alpha = 0$) and A Source at The Origin

Quantity	Uniform flow	Source/Sink	Combination
\vec{V}	$V_{\infty}\hat{\imath}$	$\pm \frac{K}{2\pi r} \hat{e}_r$	$V_{\infty}\hat{\imath} \pm \frac{K}{2\pi r}\hat{e}_r$
ϕ	$V_{\infty}x$	$\pm \frac{2K}{2\pi r} \ln r$	$V_{\infty}x \pm \frac{2K}{2\pi r}\ln r$
	$V_{\infty}y$	$\pm \frac{2K}{2\pi r} \theta$	$V_{\infty}y \pm \frac{2K}{2\pi r}\theta$

Stagnation Point:

At the stagnation point, $\vec{V}\equiv 0$

$$v_r = V_{\infty} \cos \theta + \frac{K}{2\pi r} = 0$$
$$v_{\theta} = -V_{\infty} \sin \theta = 0$$

Solve for θ and r at the stagnation point to get $(r_{stag}, \theta_{stag})$. Proceed to find ψ_{stag} to get the shape of the body. From $v_{\theta} = 0$:

$$\sin \theta = 0$$
$$\theta = 0 \quad or \quad \pm \pi$$

<u>Case 1: $\theta_s = 0$.</u> Sove for r_s from $v_r = 0$

$$\begin{aligned} v_r &= V_{\infty} \cos \theta + \frac{K}{2\pi r} = 0\\ \text{if} \quad \theta &= \theta_s = 0\\ \cos \theta_s &= 1\\ v_r &= V_{\infty} + \frac{K}{2\pi r_s} = 0\\ \text{or} \quad r_s &= -\frac{K}{2\pi V_{\infty}} \end{aligned}$$

Impossible solution as $r_s < 0$; (: K and V_{∞} are positive) Case 2: $\theta_s = \pm \pi$.

$$v_r = -V_{\infty} + \frac{K}{2\pi r_s} = 0$$
$$r_s = \frac{K}{2\pi V_{\infty}}$$

 $\theta_s = +\pi$ for the upper half of the body $\theta_s = -\pi$ for the lower half of the body Coordinates of the stagnation point:

$$(r_s, \theta_s) = \left(\frac{K}{2\pi V_{\infty}}, \pm \pi\right)$$

Body Shape (Stagnation Streamline):

A general expression for the streamfunction for the combined flow is:

$$= V_{\infty}r\sin\theta + \frac{K}{2\pi}\theta$$

Find ψ_s (= the body shape) by substituting (r_s, θ_s) .

$$\psi_s = V_{\infty} r \sin(\pm \pi) + \frac{K}{2\pi} (\pm \pi) = \pm \frac{K}{2} = const.$$

In Cartesian coordinate, the general expression for the body streamfunction becomes:

$$\pm \frac{K}{2} = V_{\infty}y + \frac{K}{2\pi}\tan^{-1}\left(\frac{y}{x}\right)$$
$$\frac{K}{2\pi}\tan^{-1}\left(\frac{y}{x}\right) = \left(\pm\frac{K}{2} - V_{\infty}y\right)$$
$$\tan^{-1}\left(\frac{y}{x}\right) = \left(\pm\pi - \frac{2\pi V_{\infty}y}{K}\right)$$
$$\frac{y}{x} = \tan\left(\pm\pi - \frac{2\pi V_{\infty}y}{K}\right)$$
$$x = \frac{y}{\tan\left(\pm\pi - \frac{2\pi V_{\infty}y}{K}\right)}$$

To find maximum y value, consider $\psi = K/2$ (upper half of the body).

$$\frac{K}{2} = V_{\infty}y + \frac{K}{2\pi}\tan^{-1}\left(\frac{y}{x}\right)$$
$$y_{max} = y_{@x=\infty} = \frac{K}{2V_{\infty}}$$

6.3.2 Combined Flow of a Source at (-b, 0) and a Sink at (b, 0)

$$=\frac{K}{2\pi}\theta_1 - \frac{K}{2\pi}\theta_2$$

where θ_1 and θ_2 are measured from the center of the source and sink respectively.

$$\theta_{1} = \tan^{-1}\left(\frac{y}{x+b}\right), \quad \theta_{2} = \tan^{-1}\left(\frac{y}{x-b}\right)$$
$$\theta_{2} - \theta_{1} = \tan^{-1}\left(\frac{y}{x-b}\right) - \tan^{-1}\left(\frac{y}{x+b}\right)$$
$$\theta_{2} - \theta_{1} = \tan^{-1}\left(\frac{2by}{x^{2}+y^{2}-b^{2}}\right)$$
$$= \psi_{1} + \psi_{2} = \frac{K}{2\pi}(\theta_{1} - \theta_{2})$$
$$\theta_{1} - \theta_{2} = -\tan^{-1}\left(\frac{2by}{x^{2}+y^{2}-b^{2}}\right)$$
$$\psi_{source+sink} = -\frac{K}{2\pi}\tan^{-1}\left(\frac{2by}{x^{2}+y^{2}-b^{2}}\right)$$
$$\frac{2\pi\psi}{K} = -\tan^{-1}\left(\frac{2by}{x^{2}+y^{2}-b^{2}}\right)$$
$$\tan\left(\frac{2\pi}{K}\right) = -\frac{2by}{x^{2}+y^{2}-b^{2}}$$
$$x^{2} + y^{2} + 2by\cot\left(\frac{2\pi}{K}\right) = b^{2}$$
$$(x - 0)^{2} + \left(y + b\cot\left[\frac{2\pi}{K}\right]\right)^{2} = b^{2}\csc^{2}\left[\frac{2\pi}{K}\right]$$

Equation of a circle with center at $\left(0, \pm b \cot \frac{2\pi\psi}{K}\right)$ and radius of $\left(b \csc \frac{2\pi\psi}{K}\right)$. When $y = 0, x = \pm b$. All streamlines go through $\pm b$.

6.3.3 Uniform Flow to The Right+Source (-b, 0)+ Sink (b, 0) (Rankine oval)

- Source of strength K placed at (-b, 0)
- Sink of strength K placed at (b, 0)
- Uniform flow to the right $(\alpha = 0)$

$$= V_{\infty}r\sin\theta + \frac{K}{2\pi}\theta_1 - \frac{K}{2\pi}\theta_2$$

Problem:

Analyze Rankine oval.

6.3.4 2-D Doublet

Definition: A doublet is obtained when a source and sink of equal strength approach each other so that the product of their strength and the distance apart remains a constant.

$$B = K(2b) = constant$$

$$\psi_{source+sink} = -\frac{K}{2\pi} \tan^{-1} \left(\frac{2by}{x^2 + y^2 - b^2} \right)$$
$$= -\frac{2bK}{4\pi} \frac{\tan^{-1} \left(\frac{2by}{x^2 + y^2 - b^2} \right)}{b}$$
$$\lim_{2bK \to \mu} \psi_{source+sink} = \psi_{doublet} = -\frac{\mu}{4\pi} \lim_{b \to 0} \left[\frac{\tan^{-1} \left(\frac{2by}{x^2 + y^2 - b^2} \right)}{b} \right]$$

Using L'Hospital's rule:

.

$$\begin{split} \psi_{doublet} &= -\frac{\mu}{4\pi} \lim_{b \to 0} \left[\frac{\frac{\frac{d}{db} \frac{2by}{x^2 + y^2 - b^2}}{1 + \left(\frac{2by}{x^2 + y^2 - b^2}\right)^2}}{\frac{db}{db}} \right] = -\frac{\mu}{4\pi} \lim_{b \to 0} \left[\frac{\frac{(x^2 + y^2 - b^2)(2y) - (2by)(-2b)}{(x^2 + y^2 - b^2)^2}}{1 + \left(\frac{2by}{x^2 + y^2 - b^2}\right)^2} \right] = -\frac{\mu}{4\pi} \left(\frac{2y}{x^2 + y^2} \right) \\ \psi_{doublet} &= -\frac{\mu}{2\pi} \frac{\sin \theta}{r} \end{split}$$

Streamlines

$$x^{2} + y^{2} + \frac{\mu y}{2\pi\psi} = 0$$
$$(x - 0)^{2} + \left(y + \frac{\mu}{4\pi\psi}\right)^{2} = \left(\frac{\mu}{4\pi\psi}\right)^{2}$$

Streamlines are circles centerd on the *y*-axis a distance $-\frac{\mu}{4\pi\psi}$ from the *x*-axis with a radius of $\left|\frac{\mu}{4\pi\psi}\right|$. All circles pass through the origin.

Problem:

Show that $\phi = \frac{\mu}{2\pi} \frac{\cos \theta}{r}$ for a 2-D doublet.

6.3.5 Uniform Flow to The Right + A 2-D Doublet

Quantity	Uniform flow	2-D doublet	Combination			
\vec{V}	$V_{\infty}\hat{\imath}$					
ϕ	$V_{\infty}^{X} x \\ V_{\infty} y$	$\frac{\frac{\mu}{2\pi}\frac{\cos\theta}{r}}{\frac{\mu}{\sin\theta}}$	$V_{\infty}x + \frac{\mu}{2\pi}\frac{\cos\theta}{r}$ $V_{\infty}y - \frac{\mu}{2\pi}\frac{\sin\theta}{r}$			
	$V_{\infty}y$	$-\frac{\mu}{2\pi}\frac{\sin\theta}{r}$	$V_{\infty}y - \frac{\mu}{2\pi}\frac{\sin\theta}{r}$			
$V_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = \frac{1}{r} \left[V_{\infty} r \cos \theta - \frac{\mu}{2\pi} \frac{\cos \theta}{r} \right]$						
$= V_{\infty} \cos \theta \left[1 - \frac{\mu}{2\pi V_{\infty}} \frac{1}{r^2} \right] = V_{\infty} \cos \theta \left[1 - \left(\frac{R}{r}\right)^2 \right]$						
$V_{ heta} = -rac{\partial \psi}{\partial r} =$	$= -\left[V_{\infty} + \frac{\mu}{2\pi r^2}\right]$	$\int \sin \theta = -V_{\infty} s$	$\sin\theta \left[1 + \left(\frac{R}{r}\right)^2\right]$			

Where $R^2 = \frac{\mu}{2\pi V_{\infty}}$.

Stagnation Points $(\vec{V}=0)$

Set $V_{\theta} = 0$.

$$0 = -V_{\infty} \sin \theta \left[1 + \left(\frac{R}{r} \right)^2 \right]$$

$$\sin \theta = 0 \quad \text{or} \quad \theta_s = (0 \quad \text{or} \quad \pi)$$

Now set $V_r = 0$.

$$0 = V_{\infty} \sin \theta \left[1 - \left(\frac{R}{r}\right)^2 \right]$$

For $\theta = 0$ or π , $\cos \theta \neq 0$
 $\therefore \left[1 - \left(\frac{R}{r}\right)^2 \right] \equiv 0$ or $r^2 = R^2 = \frac{\mu}{2\pi V_{\infty}}$

The stagnation points are located at

$$(r_s, \theta_s) \equiv (R, 0)$$
 and (R, π)

For Cylindrical System

$$\phi = V_{\infty} r \cos \theta \left(1 + \frac{R^2}{r^2} \right)$$
$$= V_{\infty} r \sin \theta \left(1 - \frac{R^2}{r^2} \right)$$
$$V_r = V_{\infty} \cos \theta \left(1 - \frac{R^2}{r^2} \right)$$
$$V_{\theta} = -V_{\infty} \sin \theta \left(1 + \frac{R^2}{r^2} \right)$$

Where $R^2 = \frac{\mu}{2\pi V_{\infty}}$ Substitute $(r_s, \theta_s) = (R, 0)$ or (R, π) in the expression for ψ .

$$\begin{split} \psi_s &= 0 \\ \text{at } r &= R \text{ (surface of the cylinder)} \\ V_r &= V_\infty \cos\theta \left(1 - \frac{R^2}{r^2}\right) = 0 \text{ (no flow out of the cylinder)} \\ V_\theta &= -2V_\infty \sin\theta \\ C_p|_{r=R} &= \frac{p - p_\infty}{\frac{1}{2}\rho_\infty V_\infty} = 1 - \left(\frac{V}{V_\infty}\right)^2 = 1 - \frac{V_r^2 + V_\theta^2}{V\infty^2} = 1 - \left(\frac{V_\theta}{V_\infty}\right)^2 = 1 - 4\sin^2\theta \\ C_p \text{ (2-D cylinder)} &= 1 - 4\sin^2\theta \end{split}$$

6.4 2-D Vortex Flow (Potential Vortex)

A 2-D point vortex is a mathematical concept that induces a velocity field given by

$$V_r = 0, \quad V_\theta = \frac{const.}{r} = \frac{C}{r}$$

1. Check if the flow satisfies conservation of mass (Is it a physically possible flow?)

$$\nabla \cdot \vec{V} \stackrel{?}{=} 0$$

$$\nabla \cdot \vec{V} = \frac{1}{r} \left[\frac{\partial (V_r r)}{\partial r} + \frac{\partial V_{\theta}}{\partial \theta} \right] = 0 \rightarrow \quad \text{exist.}$$

$$V_r = \frac{\partial \psi}{r \partial \theta} = 0 \rightarrow \psi = g(r)$$

$$V_{\theta} = -\frac{\partial \psi}{\partial r} = \frac{C}{r} \rightarrow \quad = -C \ln r + f(\theta)$$

$$\frac{\partial \psi}{\partial \theta} = f'(\theta) = 0$$

$$f(\theta) = const.$$

$$\therefore \psi = -C \ln r + const.$$

When $r \to 0$, $V_{\theta} = \infty$ and $\to \infty$. To eliminate the infinite velocity it is arbitrary assumed that = 0 at r = R

$$\therefore \psi = -C \ln R + const. = 0$$

$$const. = C \ln R$$

$$= -C \ln \left(\frac{r}{R}\right) \text{ for } (r \ge R)$$

2. Check if the flow is irrotational

$$\begin{aligned} \nabla \times \vec{V} &\stackrel{?}{=} 0 \\ \nabla \times \vec{V} &= \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{e}_1 & h_2 \hat{e}_2 & h_3 \hat{e}_3 \\ \frac{\partial}{\partial q_1} & \frac{\partial}{\partial q_2} & \frac{\partial}{\partial q_3} \\ h_1 V_1 & h_2 V_2 & h_3 V_3 \end{vmatrix} = \frac{1}{r} \begin{vmatrix} \hat{e}_r & r \hat{e}_\theta & \hat{e}_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ V_r & r V_\theta & V_z \end{vmatrix}$$

Vorticity or $(\nabla \times \vec{V})$ in the $r - \theta$ plane

$$\frac{1}{r}\left(\frac{\partial rV_{\theta}}{\partial r} - \frac{\partial V_{r}}{\partial \theta}\right) = \left(\frac{\partial C}{\partial r} - \frac{\partial 0}{\partial \theta}\right) = 0 \to \phi \text{ exist.}$$

Problem:

Show that $\phi = -C\theta$.

Evaluate the Constant C

Evaluate the circulation Γ around the point vortex.

1. Around closed curve C1 that does not include the point vortex

$$\Gamma_{C1} = -\oint_{C1} \vec{V} \cdot d\vec{l} = \iint_{S_1} (\underbrace{\nabla \times \vec{V}}_{0}) \cdot d\vec{A} = 0$$

2. Around C2 that includes the point vortex.

г

$$\begin{split} \Gamma_{C2} &= -\left[\oint_{C2} \left(V_r \hat{e}_r + V_\theta \hat{e}_\theta\right) \cdot \left(dr \ \hat{e}_r + r \ d\theta \hat{e}_\theta\right)\right] \\ &= -\left[\oint_C \left(V_r \hat{e}_r + V_\theta \hat{e}_\theta\right) \cdot \left(dr \ \hat{e}_r + r \ d\theta \hat{e}_\theta\right)\right] + \left[\oint_{C2-C} \left(V_r \hat{e}_r + V_\theta \hat{e}_\theta\right) \cdot \left(dr \ \hat{e}_r + r \ d\theta \hat{e}_\theta\right)\right] \\ &= -\left[\oint_C \left(V_r \hat{e}_r + V_\theta \hat{e}_\theta\right) \cdot \left(dr \ \hat{e}_r + r \ d\theta \hat{e}_\theta\right) + 0\right] \\ &= -\left[\oint_C V_r dr + \oint_C V_\theta r \ d\theta\right] = -\left[0 + \int_0^{2\pi} \left(\frac{C}{r}\right) r \ d\theta\right] = -2\pi C \\ \Gamma_{C2} &= -2\pi C \quad \text{or} \quad -\frac{\Gamma}{2\pi} = C \end{split}$$

This implies that the circulation evaluated for a curve enclosing the 2-D vortex is a constant and not equal to zero.

For a potential vortex, $V_{\theta} = -\frac{\Gamma}{2\pi r}$ and $\psi = -C \ln \frac{r}{R}$.

$$\therefore \psi = \frac{\Gamma}{2\pi} \ln \frac{r}{R} \text{ for } r \ge R$$

=const , then $\ln\frac{r}{R}=\frac{2\pi\psi}{\Gamma},\ \frac{r}{R}=e^{2\pi\psi/\Gamma},\ r=Re^{2\pi\psi/\Gamma}$

Streamlines are concentric circles with center at the 2D point vortex.

$$V_r = \frac{\partial \phi}{\partial r}$$
, $V_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = -\frac{\Gamma}{2\pi r}$
 $\phi = -\frac{\Gamma}{2\pi} \theta + C$ or $\phi = -\frac{\Gamma}{2\pi} \theta$ (straight lines form the origin).

A line vortex can be described as a string of rotating particles. A chain of fluid particles are spinning on their common axis and carrying around with them a swirl of particles which flow around in circles.

A cross-section of such a string of particles and its associated flow shows a spinning point 'outside' of which is streamline flow in concentric circles.

Vortices are common in nature, the difference between a real vortex as opposed to a theoretical line vortex is that the former has a core of fluid which is rotating as a 'solid', although the associated 'swirl' outside is the same as the flow 'outside' the point vortex.

6.4.1 Uniform Flow to The Right ($\alpha = 0$) + A 2-D Doublet + A 2-D Point Vortex

• As we all know, uniform flow to the right + 2-D Doublet = non-lifting over a cylinder

• Uniform flow to the right + 2-D Doublet + 2-D Point Vortex = Lifting flow over a cylinder

The parameters for lifting flow over a cylinder are as follow (spinning cylinder):

Quantity	Non-lifting flow over a cylinder	Vortex of Strength Γ	Combination
	$V_{\infty}r\sin\theta(1-\frac{R^2}{r^2})$	$\frac{\Gamma}{2\pi} \ln \frac{r}{R}$	$V_{\infty}r\sin\theta(1-\frac{R^2}{r_{\infty}^2})+\frac{\Gamma}{2\pi}\ln\frac{r}{R}$
ϕ	$V_{\infty}r\cos\theta(1+\frac{R^2}{r^2})$	$-\frac{\Gamma}{2\pi}\theta$	$V_{\infty}r\cos\theta(1+\frac{R^2}{r^2})-\frac{\Gamma}{2\pi}\theta$
V_r	$V_{\infty}\cos heta(1-rac{\dot{R}^2}{r^2})$	0	$V_{\infty}\cos\theta(1-\frac{R^2}{r^2})$
$V_{ heta}$	$-V_{\infty}\sin\theta(1+\frac{R^2}{r^2})$	$-\frac{\Gamma}{2\pi r}$	$-V_{\infty}\sin\theta(1+\frac{R^2}{r^2})-\frac{\Gamma}{2\pi r}$

- Flow satisfies continuity at every point $r \ge R$. $\therefore \nabla \cdot \vec{V} = 0$.
- Flow satisfies irrotationality at every point $r \ge R$. $\therefore \nabla \times \vec{V} = 0$.

Determine the stagnation points for the combined flow

At the stagnation points, $\vec{V} = 0, V_r = 0 = V_{\theta}$. If we set $V_r = 0$, we get $r_s = R$ or $\theta_s = \pm \frac{\pi}{2}$, <u>Case(1)</u>: $r = R_s = R$

$$V_{\theta} = -V_{\infty} \sin \theta_s (1+1) - \frac{\Gamma}{2\pi R} = 0$$
$$\sin \theta_s = -\frac{\Gamma}{4\pi R V_{\infty}} \le 0$$

Because $\Gamma > 0$, $4\pi RV_{\infty} > 0$, $\frac{\Gamma}{4\pi V_{\infty}} > 0$. When $\frac{\Gamma}{4\pi V_{\infty}} < R$, θ_s has one value in the third quadrant and one in the fourth quadrant that will satisfy the above relation. The coordinates of the stagnation point are:

$$y_s = Rsin\theta_s = -\frac{\Gamma}{4\pi V_{\infty}}$$
$$x_s = \pm \sqrt{R^2 - y_s^2} = \pm \sqrt{R^2 - (\frac{\Gamma}{4\pi V_{\infty}})^2}$$

When $\frac{\Gamma}{4\pi V_{\infty}} = R$, there is only one solution. However, the method fails when $\frac{\Gamma}{4\pi V_{\infty}} > R$.

 $\Gamma = 0 \qquad \qquad 0 < \frac{\Gamma}{4\pi V_{\infty}} < R \qquad \qquad \frac{\Gamma}{4\pi V_{\infty}} = R$

 $\underline{Case(2)}: \ \theta = \pm \frac{\pi}{2}$

<u>Case(2a)</u>: $\theta = \frac{\pi}{2}, r = r_s$

$$V_r = V_\infty \cos(\frac{\pi}{2})(1 - \frac{R^2}{r^2}) = 0$$
$$V_\theta = -V_\infty \sin(\frac{\pi}{2})(1 + \frac{R^2}{r^2}) - \frac{\Gamma}{2\pi r} = 0$$
$$r_s^2 + \frac{\Gamma}{2\pi V_\infty}r_s + R^2 = 0$$
$$r_s = -\frac{\Gamma}{4\pi V_\infty} \pm \sqrt{(\frac{\Gamma}{4\pi V_\infty})^2 - R^2}$$

When $\frac{\Gamma}{4\pi V_{\infty}} > R$, r_s results in negative number for all cases. Because both roots are negative, the solution is impossible.

 $\underline{Case(2b)}: \theta = -\frac{\pi}{2}, r = r_s$

$$V_r = V_{\infty} \cos(-\frac{\pi}{2})(1 - \frac{R^2}{r^2}) = 0$$
$$V_{\theta} = -V_{\infty} \sin(-\frac{\pi}{2})(1 + \frac{R^2}{r^2}) - \frac{\Gamma}{2\pi r} = 0$$
$$r_s^2 - \frac{\Gamma}{2\pi V_{\infty}}r_s + R^2 = 0$$
$$r_s = \frac{\Gamma}{4\pi V_{\infty}} \pm \sqrt{(\frac{\Gamma}{4\pi V_{\infty}})^2 - R^2}$$

When $\frac{\Gamma}{4\pi V_{\infty}} > R$, we get $r_s = \frac{\Gamma}{4\pi V_{\infty}} - \sqrt{(\frac{\Gamma}{4\pi V_{\infty}})^2 - R^2} < R$. So we can't use this solution. However, $\theta_s = -\frac{\pi}{2}$ and $\frac{\Gamma}{4\pi V_{\infty}} > R$ is an acceptable solution when $r_s = \frac{\Gamma}{4\pi V_{\infty}} \pm \sqrt{(\frac{\Gamma}{4\pi V_{\infty}})^2 - R^2} > R$

Force on a Cylinder with Circulation in a Uniform Steady Flow

Force on an elemental distance on the surface of the cylinder:

$$d\vec{F} = -p_b R d\theta \hat{e_r}$$
$$d\vec{F} = -p_b R d\theta (\cos \theta \hat{i} + \sin \theta \hat{j})$$
$$\vec{F} = \int_0^{2\pi} -p_b R d\theta (\cos \theta \hat{i} + \sin \theta \hat{j})$$

The drag per unit span is

$$D' = \vec{F} \cdot \hat{j} = \int_{0}^{2\pi} -p_b cos\theta R d\theta$$

The lift per unit span is

$$L' = \vec{F} \cdot \hat{i} = \int_{0}^{2\pi} -p_b sin\theta R d\theta$$

As we know, in incompressible flow the total pressure $p_o = p + \frac{\rho V^2}{2}$, which is a constant throughout the flow. $p_b = p_o - \frac{\rho (V_r^2 + V_{\theta}^2)}{2}$. Besides, there is no flow normal to the surface, $V_r = 0$.

$$p_b = p_o - \frac{\rho}{2} V_{\theta}^2$$

$$p_b = p_o - \frac{\rho}{2} (-2V_{\infty} \sin \theta - \frac{\Gamma}{2\pi R})^2$$

$$p_b = p_o - 2\rho V_{\infty}^2 (\sin \theta)^2 - \rho V_{\infty} \sin \theta \frac{\Gamma}{R\pi} - \frac{\rho \Gamma^2}{8\pi^2 R^2}$$

$$\therefore D' = R \int_{0}^{2\pi} -(p_o - 2\rho V_{\infty}^2 (\sin \theta)^2 - \rho V_{\infty} \sin \theta \frac{\Gamma}{R\pi} - \frac{\rho \Gamma^2}{8\pi^2 R^2}) \cos \theta d\theta = 0$$

which means that d'Alembert's paradox still prevails.

$$L' = R \int_{0}^{2\pi} -(p_o - 2\rho V_{\infty}^2 (\sin\theta)^2 - \rho V_{\infty} \sin\theta \frac{\Gamma}{R\pi} - \frac{\rho \Gamma^2}{8\pi^2 R^2}) \sin\theta d\theta = \rho V_{\infty} \Gamma$$

which is the Kutta-Joukowski theorem.

In inviscid, incompressible flow, the resultant force per unit span acting on a 2-D body of any cross section is equal to $\rho V_{\infty}\Gamma$ and acts perpendicular to V_{∞} .