
Chapter 7

Incompressible Flow Over Airfoils

Aerodynamics of wings:
–2-D sectional characteristics of the airfoil;
–Finite wing characteristics (How to relate 2-D characteristics to 3-D characteristics)

How to obtain 2-D characteristics?
(a)Experimental methods (NACA airfoils)
(b)Analytical methods
(c)Numerical methods

Airfoil characteristics:
(1) Cl − α
(2) Cd − α
(3) Cm,c/4 − α

Characteristics of Cl − α curve:
(a)αl=0

(b)a0 = dCl

dα
(c)Clmax
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.1. VORTEX FILAMENT

At low to moderate angles of attack Cl − α curve is linear. The flow moves slowly over the airfoil and is
attached over most of the surface. At high angles of attack, the flow tends to separate from the top surface.

• Cl,max occurs prior to stall

• Cl,max is dependent on Re = ρvc
µ

• Cm,c/4 is independent of Re except for large α

• Cd is dependent on Re

• The linear portion of the Cl − α curve is independent of Re and can be predicted using analytical
methods.

Theoretical/analytical methods to evaluate 2-D characteristics:
Recall from potential flow that a spinning cylinder produces lift L = ρV Γ. For a 2-D Vortex (spinning
clockwise):

ψ =
Γ

2π
lnr

φ = −
Γ

2π
θ

vθ =
Γ

2π
r

vr = 0

7.1 Vortex Filament

Consider 2-D/point vortices of same strength duplicated in every plane parallel to the z-x plane along the
y-axis from −∞ to ∞. The flow is 2-D and is irrotational everywhere except the y-axis. y-axis is the straight
vortex filament and may be defined as a line.

• Definition: A vortex filament is a straight or curved line in a fluid which coincides with the axis of
rotation of successive fluid elements.

• Helmholt’s vortex theorems:

1. The strength of a vortex filament is constant along its length.

Proof: A vortex filament induces a velocity field that is irrotational at every point excluding
the filament. Enclose a vortex filament with a sheath from which a slit has been removed. The
vorticity at every point on the surface=0. Evaluate the circulation for the sheath.

Circulation = −
∮

C

~V · d~s = −
∫∫

S
(∇× ~V ) · d ~A.

Sheath is irrotational. Thus ∇× ~V = 0, −
∮

C

~V · d~s = 0 or
∮

~V · d~s = 0

b
∫

a

~V · d~s+

c
∫

b

~V · d~s+

d
∫

c

~V · d~s+

a
∫

d

~V · d~s = 0

However,

c
∫

b

~V · d~s+

a
∫

d

~V · d~s = 0
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as it constitutes the integral across the slit.

Thus,

b
∫

a

~V · d~s+

d
∫

c

~V · d~s = 0

b
∫

a

~V · d~s = −

d
∫

c

~V · d~s =

∫ c

d

~V · d~s = Γ

2. A vortex filament cannot end in a fluid; it must extend to the boundaries of the fluid or form a
closed path.

3. In the absence of rotational external flow, a fluid that is irrotational remains irrotational.

4. In the absence of rotational extenal force, if the circulation around a path enclosing a definite
group of particles is initially zero, it will remain zero.

5. In the absence of rotational extenal force, the circulation around a path that encloses a tagged
group of elements is invariant.
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Vortex Sheet or vortex surface

An infinite number of straight vortex filaments placed side by side form a vortex sheet. Each vortex filament
has an infinitesimal strength γ(s).

θ

r
v v

vortex sheet

r

ds

θ

γ(s) is the strength of vortex sheet per unit length along s.
vθ = −Γ

2πr for 2-D (point vortex).

A small portion of the vortex sheet of strength γds induces an infinitesimally small velocity dV at a field
point P (r, θ).
So, vθ|vortexfilament = −γds

2πr
... dvP = − γds

2πr .

Circulation Γ around a point vortex is equal to the strength of the vortex. Similarly, the circulation around
the vortex sheet is the sum of the strengths of the elemental vortices. Therefore, the circulation Γ for a finite
length from point ’a’ to point ’b’ on the vortex sheet is given by:

Γ =
∫ b

a
γ(s)ds

Across a vortex sheet, there is a discontinuous change in the tangential component of velocity and the normal
component of velocity is preserved.

∆

2

1
2

1

n

w

u

w

u

s

x

z

∆
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∆Γ = −

∫

~v · d~l

∆Γ = −

∫

Box

~v · d~l = −[w2∆n− u1∆s− w1∆n+ u2∆s]

γ∆s = (u1 − u2)∆s+ (w1 − w2)∆n

As ∆n→ 0, we get

γ∆s = (u1 − u2)∆s or γ = (u1 − u2)

γ = (u1 − u2) states that the local jump in tangential velocity across the vortex sheet is equal to the local
sheet strength.

Kutta Condition:

For a given airfoil at a given angle of attack, the value of Γ around the airfoil is such that
the flow leaves the trailing edge smoothly.

The Kutta condition tells us how to find Γ; it is based on experimental observation. A body with fi-
nite angle TE in relative motion through a fluid will create about itself a circulation of sufficient strength to
hold the rear stagnation point at the TE. If the TE has a zero angle, the Kutta Condition requires that the
velocity of fluid leaving upper and lower surfaces at the TE be equal and non-zero. A body with a finite TE
angle will have crossing streamlines at the TE unless the TE is a stagnation point. The Kutta Condition
eliminates the crossing streamlines. Consider the TE as a vortex sheet:

γ(TE) = Vu − Vl

If the TE has a finite angle Vu = Vl = 0 because TE is a stagnation point. Or γ(TE) = 0. If the TE is a cusp
(zero angle), Vu = Vl and hence γ(TE) = Vu − Vl = 0. Thus, Kutta Condition expressed mathematically in
terms of vortex strength is γ(TE) = 0.

7.1.1 Bound Vortex and Starting Vortex

The question might arise: Does a real airfoil flying in a real fluid give rise to a circulation about itself? The
answer is yes. When a wing section with a sharp T.E is put into motion, the fluid has a tendency to go
around the sharp T.E from the lower to the upper surface. As the airfoil moves along vortices are shed from
the T.E which form a vortex sheet.
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• Helmholtz’s theorem:

If Γ = 0 originally in a flow it remains zero.

• Kelvin’s theorem:

Circulation around a closed curve formed by a set of continuous fluid elements remains constant as
the fluid elements move through the flow, DΓ

Dt = 0. Substantial derivative gives the time rate of
change following a given fluid element. The circulation about the airfoil is replaced by a vortex of
equal strength. This is the bound vortex since it remains bound to the airfoil. A true vortex remains
attaced to the same fluid particles and moves with the general flow. Thus, as far as resultant forces are
concerned, a bound vortex of proper strength in a uniform flow is equivalent to a body with circulation
in a uniform flow.

• Both the theorems are satisfied by the starting vortex and bound vortex system. In the beginning, Γ1

= 0 when the flow is started within the contour C1. When the flow over the airfoil is developed, Γ2

within C2 is still zero which includes the starting vortex Γ3 and the bound vortex Γ4 which are equal
and opposite.
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7.2 Fundamental Equation of Thin Airfoil Theory

Principle: Mean camber line is a streamline of the flow.
Velocity induced by a 2-D vortex is ~V = vθ êθ = − Γ

2πr êθ where Γ is the strength of the 2-D vortex. Similarly
the velocity induced by the vortex sheet of infinitesimal length ds is given by

d~vP = −
γ(s)ds

2πr
êθ

To force the mean camber line to be a streamline, the sum of all velocity components normal to the mcl
must be equal to zero. Consider the flow induced by an elemental vortex sheet ds at a point P on the vortex
sheet. It is perpendicular to the line connecting the center of ds to the point P given by

d~vP = −
γ(s)ds

2πr
êθ

Thus dw′

P the velocity normal to the mcl is:

dw′

P = dvP cosβ = −
γ(s) cosβds

2πr

where β is the angle made by dvp to the normal at P, and r is the distance from the center of ds to the point
P.
The induced velocity due to the vortex sheet representing the entire mcl is given by;

w′

P (s) = −
1

2π

TE
∫

LE

γ(s) cosβ

r
ds

Now determine the component of the freestream velocity normal to the mcl.
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V∞,n = V∞ sin(α+ ε)

where α is the angle of attack and ε is the angle made by the tangent at point P to the x-axis.
The slope of the tangent line at point P is given by:

dz

dx
= tan(π − ε) = − tan ε

or

ε = tan−1(−
dz

dx
)

V∞,n = V∞(sinα+ tan−1(−
dz

dx
))

In order that the mcl is a streamline. w′

P (s) + V∞,n = 0, or

−
1

2π

TE
∫

LE

γ(s) cosβ

r
ds+ V∞(sinα+ tan−1(−

dz

dx
)) = 0

within thin airfoil theory approximation s→ x, ds→ dx, cosβ = 1 and r → (x0 − x), where x varies from 0
to c, and x0 refers to the point P.

After changing these variables and making the small angle approximation for sin and tan, and upon rear-
rangement we get:

1

2π

c
∫

0

γ(x)

x0 − x
dx = V∞(α−

dz

dx
)

7.3 Flat Plate at an Angle of Attack

The following analysis is an exact solution to the flat plate or an approximate solution to the symmetric
airfoil. The mean camber line becomes the chord and hence:

dz

dx
= 0

1

2π

c
∫

0

γ(x)

(x0 − x)
dx = V∞α

In order to facilitate analytic solution, we do a variable transformation such that:

x =
c

2
(1 − cos θ)

x0 =
c

2
(1 − cos θ0)

θ = 0 at LE and θ = π at TE and θ increases in CW, dx = c
2

sin θdθ

1

2π

π
∫

0

γ(θ) c
2

sin θ
c
2
[(1 − cos θ0) − (1 − cos θ)]

dθ = V∞α
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1

2π

π
∫

0

γ(θ) sin θ

(cos θ − cos θ0)
dθ = V∞α

Here we simply state a rigorous solution for γ(θ) as:

γ(θ) = 2αV∞
1 + cosθ

sin θ

We can verify this solution by substitution as follows:

1

2π

π
∫

0

γ(θ) sin θ

(cos θ − cos θ0)
dθ =

V∞α

π

π
∫

0

(1 + cos θ)

(cos θ − cos θ0)
dθ

We now use the following result to evaluate the above integral.

π
∫

0

(cosnθ)

(cos θ − cos θ0)
dθ =

π sinnθ0
sin θ0

V∞α

π

π
∫

0

(1 + cos θ)

(cos θ − cos θ0)
dθ =

V∞α

π





π
∫

0

1

cos θ − cos θ0
dθ +

π
∫

0

cos θ

cos θ − cos θ0
dθ



 (7.1)

=
V∞α

π
(0 + π) = V∞α (7.2)

Thus, it satisfies the equation:

1

2π

π
∫

0

γ(θ) sin θ

(cos θ − cos θ0)
dθ = V∞α

In addition, the solution for γ also satisfies the Kutta condition.
When θ = π,

γ(π) = 2V∞α
1 − 1

0

By using L’Hospital’ rule, we get

γ(π) = 2V∞α
− sinπ

cosπ
= 0

Thus it satifies the Kutta condition.

7.4 2-D lift coefficient for a thin/symmetrical airfoil

L
′

= ρ∞V∞Γ = ρV∞

TE
∫

LE

γ(s)ds

Where s is along the mcl.
By using thin airfoil approximation:

L
′

' ρV∞

TE
∫

LE

γ(x)dx = ρV∞

c
∫

0

γ(x)dx
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Using the transformation x = c
2
(1 − cosθ)

L
′

' ρ∞V∞

c
∫

0

γ(x)dx =
1

2
ρ∞V∞c

π
∫

0

γ(θ) sin θdθ

Substituting the solution:

γ(θ) =
2αV∞(1 + cos θ)

sin θ

L
′

'
1

2
ρ∞V∞c

π
∫

0

2V∞α(1 + cos θ)dθ

L
′

' αρ∞V
2

∞
c

π
∫

0

(1 + cos θ)dθ

L
′

' cπαρ∞V
2

∞

L
′

' 2πα(
ρ∞V

2
∞

2
)(c× 1)

L
′

' 2παq∞S

or Cl = L
′

q∞S = 2πα, and dCl

dα = 2π
dCl

dα = 2π shows that lift curve is linearly proportional to the angle of attack.

7.4.1 Calculation of Moment Coefficient

M
′

LE = −

c
∫

0

x(dL
′

) (7.3)

= −

c
∫

0

x(ρ∞V∞dΓ) (7.4)

= −

c
∫

0

x(ρ∞V∞γ(x)dx) (7.5)

= −ρ∞V∞

c
∫

0

γ(x)xdx (7.6)

= −ρ∞V∞

π
∫

0

2αV∞(1 + cos θ)

sin θ
·
c

2
(1 − cos θ) ·

c

2
sin θdθ (7.7)

= −2αρ∞V
2

∞

c2

4

π
∫

0

(1 − cos2 θ)dθ (7.8)

= −αρ∞V
2

∞

c2

2

(π

2

)

(7.9)

= −q∞c
2

(απ

2

)

(7.10)
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Cm,LE =
M

′

LE

q∞Sc
=
M

′

LE

q∞c2
= −

πα

2

Cl = 2πα

Cm,LE = −
Cl

4

M
′

LE = M
′

c/4
− L

′

c/4

Cm,LE = Cm,c/4 − Cl/4

Cm,LE = −Cl/4

Cm,c/4 = 0

Cm,c/4 is equal to zero for all values of α.

c/4 is the aerodynamic center. Aerodynamic center is that point on an airfoil where moments are independant
of angle of attack.

7.5 Thin Airfoil Theory for Cambered Airfoil

1

2π

∫ c

0

γ(x)dx

x0 − x
= V∞(α−

dz

dx
) (A)

where dz
dx is the slope of mcl at x0.

For symmetric airfoil, mcl is a straight line and hence dz
dx = 0 everywhere. On the other hand, for a cambered

airfoil dz
dx varies from point to point.

As before, we do a variable transformation given by:

x =
c

2
(1 − cos θ)

dx =
c

2
sin θdθ

Equation (A) becomes:

1

2π

∫ c

0

γ(θ) sin θdθ

(cos θ − cos θ0)
= V∞(α−

dz

dx
) (B)

has a solution of the form:

γ(θ) = 2V∞[A0(
1 + cos θ

sin θ
) +

∞
∑

n=1

An sinnθ]

Sub. solution in equation (B)

1

π

∫ π

0

A0(1 + cos θ)

(cos θ − cos θ0)
dθ +

1

π

∞
∑

n=1

∫ π

0

An sinnθ sin θ

(cos θ − cos θ0)
dθ = (α−

dz

dxx0

)

Using the integral
∫ π

0

cosnθ

(cos θ − cos θ0)
dθ = π

sinnθ0
sin θ0
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The first term becomes:

1

π

∫ π

0

A0(1 + cos θ)

(cos θ − cos θ0)
dθ

=
1

π

∫ π

0

A0

(cos θ − cos θ0)
dθ +

1

π

∫ π

0

A0 cos θ

(cos θ − cos θ0)
dθ

= A0

Using the integral
∫ π

0

sinnθ sin θ

(cos θ − cos θ0)
dθ = −π cosnθ0

The second term becomes:

1

π

∞
∑

n=1

∫ π

0

An sinnθ sin θ

(cos θ − cos θ0)
dθ ∼= −

∞
∑

n=1

An cosnθ0

Therefore Equation (B) becomes:

A0 −

∞
∑

n=1

An cosnθ0 = α−
dz

dxx0

Upon rearrangement the slope at a point P on the mcl is given by:

dz

dx
= (α−A0) +

∞
∑

n=1

An cosnθ0

From Fourier serious

f(θ) = B0 +

∞
∑

n=1

Bn cosnθ

Where,

B0 =
1

π

∫ π

0

f(θ)dθ

Bn =
2

π

∫ π

0

f(θ) cosnθdθ

n = 1, 2, ...,∞

(α−A0) = B0 =
1

π

∫ π

0

(
dz

dx
)dθ

An = Bn

Evaluation of Γ

Γ =

∫ c

0

γ(x)dx =
c

2

∫ c

0

γ(θ) sin θdθ

From thin airfoil theroy

γ(θ) = 2V∞[
A0(1 + cos θ)

sin θ
+

∞
∑

n=1

An sinnθ]

Γ =
c

2

∫ c

0

γ(θ) sin θdθ =
c

2

∫ π

0

2V∞A0(1 + cos θ)dθ +
c

2

∫ π

0

2V∞

∞
∑

n=1

An sinnθ sin θdθ

= cV∞[A0(θ + sin θ)|π
0

+

∞
∑

n=1

An

∫ π

0

sinnθ sin θdθ]
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Using
∞
∑

n=1

An

∫ π

0

sinnθ sin θdθ

=
π

2
for n = 1

= 0 for n 6= 1

Γ = cV∞[A0π +A1

π

2
]

L′ = ρ∞V∞Γ = ρV 2

∞
c[πA0 +

π

2
A1]

Cl =
L′

q∞s
=

L′

q∞c
= 2[πA0 +

π

2
A1]

Cl is normalized by the α as seen by the chord connecting the LE and TE of the mcl.
c is the chord connecting the LE and TE of the mcl.

Cl = 2πA0 + πA1

= 2π

(

α−
1

π

∫ π

0

(

dz

dx

)

dθ

)

+ π

(

2

π

∫ π

0

(

dz

dx

)

cos θdθ

)

= 2π

[

α+
1

π

∫ π

0

(

dz

dx

)

(cos θ − 1)dθ

]

dCl

dα
= 2π

as is the case for symmetric airfoil.
Also,

Cl =
dCl

dα
(α− αL=0) = 2π(α− αL=0)

... αL=0 = −
1

π

∫ π

0

(cos θ − 1)
dz

dx
dθ

Determination of moment coefficient

M ′

LE = −ρ∞V∞

∫ c

0

xγ(x)dx

Cm,LE =
M ′

LE

q∞sc
=

−2

V∞c2

∫ c

0

xγ(x)dx

As before we do a variable transformation from x to θ. Thus,

x =
c

2
(1 − cos θ)

dx =
c

2
sin θdθ

γ(θ) = 2V∞[
A0(1 + cos θ)

sin θ
+

∞
∑

n=1

An sinnθ]

Cm,LE = −

∫ π

0

A0(1 − cos2 θ)dθ −

∞
∑

n=1

An

∫ π

0

(1 − cos θ) sin θ sinnθdθ
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Using the following definite integrals:
∫ π

0

cos2 θdθ =
π

2
∫ π

0

sin2 θdθ =
π

2
∫ π

0

sin θ sinnθdθ

=
π

2
for n = 1

= 0 for n = 2, ...,∞
∫ π

0

sin θ cos θ sinnθdθ

= 0 for n = 1

=
π

4
for n = 2

= 0 for n = 3, ...,∞

Cm,LE = −

∫ π

0

A0dθ +

∫ π

0

A0 cos2 θdθ

−

∞
∑

n=1

(

An

∫ π

0

sin θ sinnθdθ −An

∫ π

0

sin θ cos θ sinnθdθ

)

= −πA0 +A0

π

2
−A1

π

2
+A2

π

4

= −A0

π

2
−A1

π

2
+A2

π

4

Cl = 2πA0 +A1π

Cm,LE = −
π

2

[

2A0 + 2A1 −A2

2

]

= −

[

Cl

4
+
π

4
(A1 −A2)

]

M ′

LE = M ′
c

4

− L′
c

4
(1)

Cm,LE = cm, c

4
−
Cl

4
= −

[

Cl

4
+
π

4
(A1 −A2)

]

(2)

Cm, c

4
= −

π

4
(A1 −A2)

Cm,LE = −xcp
Cl

c
(3)

xcp = [
c

4
+

πc

4Cl
(A1 −A2)] =

1

4
[c+

πc

Cl
(A1 −A2)]

Relationship between pressure on mcl and γ

dL′ = (pl − pu) cos η(ds · 1)

L′ =

∫ TE

LE

(pl − pu) cos ηds (A)

L′ =

∫ TE

LE

ρV∞γ(s)ds (B)

Equating (A) and (B) and setting cos η ∼= 1, we get

∫ TE

LE

(pl − pu)ds =

∫ TE

LE

ρV∞γ(s)ds
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or
(pl − pu) = ρV∞γ(s) (1)

Using Bernoullis equation:

pl +
1

2
ρ(u2

l + w2) = pu +
1

2
ρ(u2

u + w2)

pl − pu =
ρ

2
(uu + ul)(uu − ul) (2)

From vortex sheet theory:
uu − ul = γ(s) (3)

From (1), (2) and (3)

V∞ =
uu + ul

2

i.e., within thin airfoil approximation, the average of top and bottom surface velocities at any point on the
mcl is equal to the freestream velocity.

cp,l − cp,u =
(pl − p∞)

q∞
−

(pu − p∞)

q∞

=
pl − pu

q∞

=
1

2
ρ(uu + ul)(uu − ul)

q∞

=
γ(s)(2V∞)

v2
∞

=
2γ(s)

V∞
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