Chapter 7

Incompressible Flow Over Airfoils

Aerodynamics of wings:
—2-D sectional characteristics of the airfoil,
~Finite wing characteristics (How to relate 2-D characteristics to 3-D characteristics)

How to obtain 2-D characteristics?
(a)Experimental methods (NACA airfoils)
(b)Analytical methods

(c)Numerical methods

Airfoil characteristics:

(1) Cl —

(2) Cy—«

(3) Cm,c/4 -«

Characteristics of C; — a curve:
(a)ai=o

(b)ao = %

(C)Clmaz

Clomax 7—\
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS

AIRFONL SECTION NOMENCLATURE

Mean_camber fine 15 the locus of the points midway betwsen upper amg lower surfaces of
an airfoil as measured perpendicular to the mean camber line, MNormally, the measurament
can be made perpendicular to the chord ling within accaptable Bnginesaring accuracy.

Chord line is the line jomirg the endpoints of the mean camber line

Thickness distribution is the height of profile measured normal t¢ the mean camber line.

Thickness ratio generally dencted by tie is twice the maximum thickness to chard rstio.

Camber is the rmaximum distance betwesn the mean camber iihe and the shord measurec
normal te tha chora

Leading-edge radius is the radius of a circle, tanganmt to the upper and lowe” surfaces.
with s center located on z tangant to the mean camber line drawn through the leading
edgs of this line.

Center of pressure; The aerogynamic forzes on an airfoil section rray be -eprasented kv a
iift. a drag. and a pitching moment Far every angte of attack there exists a point apout
which the pitching moment coefficient is zers. This point  refered 1o as the centsr of
bressura mowves with change of angle of attask ang js nat necessarily within the aifoil sss-
Len.

Aerodyramic center is a paint about which the section moment cogfficient is indepenoant
of the angle of attack In contrast to the center of pressure the aerodynamic centar gen—
grally lies within the airfsit sectisn

AIRFOIL PARAMETER NOMENGCLATURE

Tie = Micknass distribution

tic = maximum zirfoii thickness [ 20T/c),,,, ]

F, = location of maximum thickness referenced to chord
zig = camber distribution

m = maximum arfoil camber

P, = location of maximum camber referencad to chord
LED = airfoil leading—edge radws

h = trailing—edge thickness refarenced to chord [2iT, . ol ]
o = airfoii angle of attack referemced to chord line

4 = trailing—adge angla

Bean camber line

\.\{E
~2
\\i

d
i

/ chard lipe
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS

7.1. VORTEX FILAMENT

At low to moderate angles of attack C; — « curve is linear. The flow moves slowly over the airfoil and is
attached over most of the surface. At high angles of attack, the flow tends to separate from the top surface.

o (| maz Occurs prior to stall

_ puc

® () mag is dependent on R, m

e Uy, /4 is independent of R, except for large

Cy is dependent on R,

methods.

The linear portion of the C; — « curve is independent of R, and can be predicted using analytical

Theoretical /analytical methods to evaluate 2-D characteristics:

Recall from potential flow that a spinning cylinder produces lift L = pVT. For a 2-D Vortex (spinning

clockwise):

7.1 Vortex Filament

r
P = %lmﬂ
r
=——0
¢ 2w
I
Vg = 27TT
v =0

Consider 2-D/point vortices of same strength duplicated in every plane parallel to the z-x plane along the
y-axis from —oo to co. The flow is 2-D and is irrotational everywhere except the y-axis. y-axis is the straight

vortex filament and may be defined as a line.

e Definition: A vortex filament is a straight or curved line in a fluid which coincides with the axis of

rotation of successive fluid elements.

e Helmbholt’s vortex theorems:

1. The strength of a vortex filament is constant along its length.

Proof: A vortex filament induces a velocity field that is irrotational at every point excluding
the filament. Enclose a vortex filament with a sheath from which a slit has been removed. The
vorticity at every point on the surface=0. Evaluate the circulation for the sheath.

Circulation = — § V - d§ = — Ifs(V x V) - dA.
C
Sheath is irrotational. Thus V x V =0, —§V-d§=0or §V-d5=0
C

c d a
v.dg+/v.dg+/v.d§+/v.d§:o
b c d

f

e

However,
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.1. VORTEX FILAMENT

%

as it constitutes the integral across the slit.

Thus,
b d
/V-d§+/17.d§:o

a C

b d
/V-dé’:—/

2. A vortex filament cannot end in a fluid; it must extend to the boundaries of the fluid or form a
closed path.

<

~d§'=/ V.ds=T
d

3. In the absence of rotational external flow, a fluid that is irrotational remains irrotational.

4. In the absence of rotational extenal force, if the circulation around a path enclosing a definite
group of particles is initially zero, it will remain zero.

5. In the absence of rotational extenal force, the circulation around a path that encloses a tagged
group of elements is invariant.
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.1. VORTEX FILAMENT

Vortex Sheet or vortex surface

An infinite number of straight vortex filaments placed side by side form a vortex sheet. Each vortex filament
has an infinitesimal strength ~(s).

o<
<

vortex sheet

v(s) is the strength of vortex sheet per unit length along s.

vy = % for 2-D (point vortex).

A small portion of the vortex sheet of strength ~ds induces an infinitesimally small velocity dV at a field
point P(r,8).

. _ —nds
So, vﬂvorte;;leament = 5=
. — _Qas
AN d’Up = mr "

Circulation I" around a point vortex is equal to the strength of the vortex. Similarly, the circulation around
the vortex sheet is the sum of the strengths of the elemental vortices. Therefore, the circulation I' for a finite
length from point ’a’ to point 'b’ on the vortex sheet is given by:

r= f; ~v(s)ds

Across a vortex sheet, there is a discontinuous change in the tangential component of velocity and the normal
component of velocity is preserved.

z Uy

AN

'S

v
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.1. VORTEX FILAMENT

Al“:f/v?-df

Box

YAs = (u; — u2)As + (w1 —wa)An
As An — 0, we get

vAs = (u1 — ug)As or v = (u; — us)
v = (u1 — ug) states that the local jump in tangential velocity across the vortex sheet is equal to the local

sheet strength.

Kutta Condition:

For a given airfoil at a given angle of attack, the value of I' around the airfoil is such that
the flow leaves the trailing edge smoothly.

The Kutta condition tells us how to find I'; it is based on experimental observation. A body with fi-
nite angle TE in relative motion through a fluid will create about itself a circulation of sufficient strength to
hold the rear stagnation point at the TE. If the TE has a zero angle, the Kutta Condition requires that the
velocity of fluid leaving upper and lower surfaces at the TE be equal and non-zero. A body with a finite TE
angle will have crossing streamlines at the TE unless the TE is a stagnation point. The Kutta Condition
eliminates the crossing streamlines. Consider the TE as a vortex sheet:

fY(TE) =Vu—-V

If the TE has a finite angle V,, = V; = 0 because TE is a stagnation point. Or v(TE) = 0. If the TE is a cusp
(zero angle), V,, =V} and hence v(T'E) = V,, — V; = 0. Thus, Kutta Condition expressed mathematically in
terms of vortex strength is v(TE) = 0.

7.1.1 Bound Vortex and Starting Vortex

The question might arise: Does a real airfoil flying in a real fluid give rise to a circulation about itself? The
answer is yes. When a wing section with a sharp T.E is put into motion, the fluid has a tendency to go
around the sharp T.E from the lower to the upper surface. As the airfoil moves along vortices are shed from
the T.E which form a vortex sheet.

Vortex Sheet
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.1. VORTEX FILAMENT

C

M=o

e Helmholtz’s theorem:

If I' = 0 originally in a flow it remains zero.

e Kelvin’s theorem:

Circulation around a closed curve formed by a set of continuous fluid elements remains constant as
the fluid elements move through the flow, % = 0. Substantial derivative gives the time rate of
change following a given fluid element. The circulation about the airfoil is replaced by a vortex of
equal strength. This is the bound vortex since it remains bound to the airfoil. A true vortex remains
attaced to the same fluid particles and moves with the general flow. Thus, as far as resultant forces are
concerned, a bound vortex of proper strength in a uniform flow is equivalent to a body with circulation

in a uniform flow.

e Both the theorems are satisfied by the starting vortex and bound vortex system. In the beginning, I';
= 0 when the flow is started within the contour C';. When the flow over the airfoil is developed, I'y
within Cs is still zero which includes the starting vortex I's and the bound vortex I'y which are equal
and opposite.
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.1. VORTEX FILAMENT

THIN AIRFOIL THEGRY

Thin airfofl theory is based on tha assumption that under certain conditions an airfoi sec—
tion may bae replaced by its mean camber ine mch

Experimental observation: If airfoil sactions of the same meal but different thickness fumc-
lions are tested experimentally at the same ¢ it is found that the [ift L' and the aint

application of the lift for the different airfoil sestions ars practically the same prowidsd
that

111 t/e is small;
120 (2/g)em = s small;
13 @ is small

This obsarvation permitted the formulation of thin airfoil theery because it allowed the air—
foil to be replaced by the mel

¢ ancd i £
g _ L P
= = == A s
THIN ARfalL v
e e WL w
i TwEofy =

The problem now is 1o find, theoretically the fiow of an idead luid arcund this infiritaly
thin sheet imcl) flying through the air at a velosity Ve at an angle of attack w

Any saiution must satisfy:

1) Equation of continuity

12} Irrotaional condiion

(3) Outer ho, — Flow at infinity must ba undisturbed.

idi Inrer b, - mel must be a streamline.

{3) In addition, since the thin airfoil is being supportad in lavsl flight *hera
must ba a Hft L' acting on the airfaoil

(6 Sinca L = o ¥V ,x T iKutta—Joukowski Theoram) any theoratical analysis
must introduce a circulation [T eround the airfoil section of sufficient
magnitude to satsfy the Kutta condition that the flow leave the TE
smoothly,

- = var‘

Yoo

Therefora in thin airfoil theory the mci is repiaced by z voriax sheet of varying strength
risl such that the above canditicns ara satisfied and our aim is to datarming this ' distri-
bution

Summary: Thin airfoil theary stated as a problem says for a vortex shest placed on the mcl
in a uniferm flow of Va determing i) such that the mel is a streamline subjgzs to tha
condition [vj-, = D

67



CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.2. FUNDAMENTAL EQUATION OF THIN AIRFOIL THEORY

7.2 Fundamental Equation of Thin Airfoil Theory

Principle: Mean camber line is a streamline of the flow.
Velocity induced by a 2-D vortex is V' = vgég = 7%é9 where I is the strength of the 2-D vortex. Similarly
the velocity induced by the vortex sheet of infinitesimal length ds is given by

s)ds
dip = s,
2mr
Z
P(r,8)
8
ds
x

To force the mean camber line to be a streamline, the sum of all velocity components normal to the mcl
must be equal to zero. Consider the flow induced by an elemental vortex sheet ds at a point P on the vortex
sheet. It is perpendicular to the line connecting the center of ds to the point P given by

'y(s)dsé
2rr ¢

dvp = —

/> Tangent at P to mcl

Veo

Thus dw’s the velocity normal to the mcl is:

d
dw's = dvp cos f = _(s) cos fds
27r

where (3 is the angle made by dv, to the normal at P, and r is the distance from the center of ds to the point
P.
The induced velocity due to the vortex sheet representing the entire mcl is given by;

1 2(s)cos 8
v(s) cos
wp(s) = o / Tds
LE

Now determine the component of the freestream velocity normal to the mcl.
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.3. FLAT PLATE AT AN ANGLE OF ATTACK

Voon = Vo sin(a + €)

where « is the angle of attack and ¢ is the angle made by the tangent at point P to the x-axis.
The slope of the tangent line at point P is given by:

© —tan(r —€) = —t
— = tan(m —€) = —tane
dx

or

€= tan_l(—j—;)

d
Voo,n = Voo(Sin o+ tan_l(_ﬁ))

In order that the mecl is a streamline. wp(s) + Voo, =0, or

TE
1 ~v(s) cos 8 . _y, dz
—— | ———ds+V, t ——)) =0
277/ " s+ Voo (sina + tan™ " ( dx))
LE
within thin airfoil theory approximation s — z, ds — dz, cos = 1 and r — (x¢ — ), where x varies from 0

to ¢, and x( refers to the point P.

After changing these variables and making the small angle approximation for sin and tan, and upon rear-
rangement we get:

(&

l/y(x) iz = Voo (a dz)

21 ) wo—x Cdx

0

7.3 Flat Plate at an Angle of Attack

The following analysis is an exact solution to the flat plate or an approximate solution to the symmetric
airfoil. The mean camber line becomes the chord and hence:

dz
dr
1 (&
— / —W(x) dx = Ve
2w ) (xg —x)
0

In order to facilitate analytic solution, we do a variable transformation such that:

x = E(1 — cosd)

[\

Ty = g(l — cosbp)

=0 at LE and 0 = 7 at TE and ¢ increases in CW, dz = $ sin 6df

1/ 7(0)5 sin 6 B
2 $[(1 = cosfp) — (1 — cos )] 40 = Voo
0
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.4. 2-D LIFT COEFFICIENT FOR A THIN/SYMMETRICAL AIRFOIL

1 )sin 6

= do = Vo

2 /cos@—cos@o) Voo
0

Here we simply state a rigorous solution for v(0) as:

1+ cosf

7(0) = 2aV P~

We can verify this solution by substitution as follows:

i/ﬂ ~(0) sin 0 Jo — Voooz/Tr (14 cos®)
21 ) (cosf —cosby) T (cos® — cosfy)
0 0

We now use the following result to evaluate the above integral.

/ : (cosnd) do — 7 sinnfy

cosf —cosfy) ~ sinfy
0

Voot R (14 cos®) Voot R 1 f cos 6
_ o cosh 1
T / (cos 8 — cosbp) d0 T / cos 6 — cos 0 0+ / cos 6 — cos by d0 (7.1)
0 0 0
_ Ve a(()-l—w) Vootx (7.2)

Thus, it satisfies the equation:

i/( ~(0) sin 6 &= Vi

2 cos 6 — cos fp)
0

In addition, the solution for « also satisfies the Kutta condition.

When 6 = 7,
1-1
~v(7) = 2V
By using L’Hospital’ rule, we get
~y(m) =2V, a—2T _
cos T

Thus it satifies the Kutta condition.

7.4 2-D lift coefficient for a thin/symmetrical airfoil

TE

L' = Poo Vool = pViso /’y(s)ds
LE
Where s is along the mcl.
By using thin airfoil approximation:
TE c
L'~ pVy / y(z)dr = pVoo/'y(x)dx
LE 0

70



CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.4. 2-D LIFT COEFFICIENT FOR A THIN/SYMMETRICAL AIRFOIL

Using the transformation z = §(1 — cosf)
) (& 1 s .
L ~ pooVao /'y(x)dx = §pOOVOCc/'y(9) sin 0df
0 0
Substituting the solution:

~ 2aVy (14 cos)
B sin 6

v(0)

™
/

1
L ~ §pwVwc/2Vooa(1+cos€)d9
0

L~ ozpoonoc/(l + cos 6)dl
0

L~ crape V2

2
L~ QM(%)(C x 1)

L~ 2T o0 S
or C) = qoLOS:27ra, and[fi—%:Qw
% = 27 shows that lift curve is linearly proportional to the angle of attack.

7.4.1 Calculation of Moment Coefficient

(&

M)y = / +(dL)
0

= / 2(pooVoodT)

0
c

- —/x(pooVocﬁ(x)dm)

0
c

= paVie / 2V (1 + cost) g(l — cosh) - gsmgdg

sin 0

™
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.5. THIN AIRFOIL THEORY FOR CAMBERED AIRFOIL

M;, M, T
Cm,LE = =2 =——
(oo SC  (ooC 2
C =2«
C
Cm,LE = —ZZ

Mg = Mc/4 - Lc/4
Crm,LE = Cpyeya — C1/4
Cme =—Ci/4

Cm,c/4 =0
Cin,c/4 is equal to zero for all values of a.

¢/4 is the aerodynamic center. Aerodynamic center is that point on an airfoil where moments are independant
of angle of attack.

7.5 Thin Airfoil Theory for Cambered Airfoil
> [ v 5 (4)

2w To— T dx

where g—; is the slope of mcl at xzg.

For symmetric airfoil, mcl is a straight line and hence g—; = 0 everywhere. On the other hand, for a cambered
airfoil g—; varies from point to point.

As before, we do a variable transformation given by:

g(l — cos )
dz = < sin 0o
2
Equation (A) becomes:
1 [° ~(0)sinfdf dz
—f YT i B
27r/ (cos@ — cosby) Vool dx) (B)
has a solution of the form:
1+ cos 9 >
v(0) = 2V [Ao( g Z A,, sinnf)
Sub. solution in equation (B)
1 (7 A0(1+0059 A, sinnfsin 0 dz
- LS TRY 00 = (o — 22
T /0 (cos@ — cos 90 Z / (cos® — cosbp) (o dxxo)
Using the integral
4 cos nf sin nfy
————df = T —
o (cos@ —cosbp) sin 6
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7.5. THIN AIRFOIL THEORY FOR CAMBERED AIRFOIL

CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS

The first term becomes:

cos 6 — cos )

Bl

1/ (Ao(l—l—cos€) 40
0

1 (" Ay 1 (7 Agcosf
== ——df+ = ———df
v /0 (cos @ — cosby) * v /0 (cos® — cosby)
= AO
Using the integral
/ sinnf sin 0 40 = —r cosnfy
o (cos@ — cosby)

The second term becomes:
A,
sin nd sin 9 Z A, cosnf

_Z/ cos@—cos@o

Therefore Equation (B) becomes:
dz

AO*ZA cosnbp = o — — T

n=1
Upon rearrangement the slope at a point P on the mcl is given by

dz =(a—Ap) + Z A,, cosnby

dx —
From Fourier serious -
f(0) =By + Z B,, cosnf
n=1
Where,
By = l/Tr f(6)do
™ Jo

B, = z/ £(0) cosnbde
T Jo

n=12,..,00

1 (™ dz
—Ay) =By =— —)db
(0 —Ao) =Bo = O(dx)

A, =B,

Evaluation of T

F:/ ~y(x)dx = E/ ~(0) sin 6d0
0 2 Jo

From thin airfoil theroy

= Vo[Ao(0 +sind)|f + Z A, / sin nf sin 6d0]
0

n=1
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS

7.5. THIN AIRFOIL THEORY FOR CAMBERED AIRFOIL

Using
ZAn / sinnf sin d0
n=1 0

:g for n=1

=0 for n#1
= ch[A0n+A1g]

L' = poo Vi = pV2 [ Ag + gAl]
U
GooS dooC

() is normalized by the « as seen by the chord connecting the LE and
¢ is the chord connecting the LE and TE of the mcl.

Cl = ES 2[71'140 + gAl]

TE of the mcl.

) cos HdG)

Cl = 27TAO + 7TA1
- (s [ (@)0) (G (&
T Jo \dz ™ Jo \dz
1 (™ [(dz
v {ow— 7r/0 (dw) (cos )d@]
dCy
bl )
da i
as is the case for symmetric airfoil.
Also,
dC
C = d—al(a —ap—g) = 27 (a — ap—g)
1 ™
Lp—g = —;/0 (cos® — 1)3—;019

Determination of moment coefficient

Mpp = —pooVoo/ xy(x)dx
0

M, -2

V2

As before we do a variable transformation from x to 6. Thus,

x = g(l — cosd)
do = gsin 0do

B Ap(1+cosh) & .
v(0) = 2V | o + T; Ay, sinnf)

/0 "y (w)da

Cm.LE = —/ Ap(1 — cos?0)db — Z An/ (1 — cos ) sin 8 sin nfdo
0 1 0
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.5. THIN AIRFOIL THEORY FOR CAMBERED AIRFOIL

Using the following definite integrals:

T 5 B z
/0 cos” 6df = 5
T o _z
/0 sin” 0df = 5
/ sin 0 sin nfdo
0
:g for n=1
=0 for n=2,...,00
/ sin 0 cos 0 sin nddd
0
=0 for n=1
:% for n=2

=0 for n=3,...,00

Cm,LE = - Apdf + AoCOS29d0
0 0
—Z(An / sin @ sin nfdf — A, / smacososinnade)
n=1 0 0
Vs s ™
= —mgAg+ A= — A= + Ay
TAy + 05 12+ 27
™ Vs s
= _—Aps — A=+ A,
02 12+ 24

Cl = 27TAO + Al’/T

- m 2A0—|—2A1 —A2 o Cl s

Cm,LE = —3 [f] =- {Z + Z(Al - Az)}

Mj =M} - 1'% (1)
C C
Cm,LE = Cm,e — ZI =— {ZZ + %(/h - Az)} (2)
Cin.s = =7 (A1 — 42)
C
CVm,LE = _xcp?l (3)
c T 1 T
T A = A = oo+ A, - A

Tep [4+4Cz( 11— A)] 4[C+Cl( 11— A)]

Relationship between pressure on mcl and ~

dL' = (p; — pu) cosn(ds - 1)

TE
= [ = pcosnas (4)
LE
TE
L :/ pVeoy(8)ds (B)
LE

Equating (A) and (B) and setting cosn = 1, we get

/ o pu)ds = / Ve (s

LE LE
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CHAPTER 7. INCOMPRESSIBLE FLOW OVER AIRFOILS 7.5. THIN AIRFOIL THEORY FOR CAMBERED AIRFOIL

(p1 = Pu) = PVocv(5) (1)

Using Bernoullis equation:

1 1
Pt = p(uf + w?) = py + 2 p(ul + w?)

2 2
L= Pu = g(uu+uz)(uu —w) (2)
From vortex sheet theory:
= s = (s) 3)
From (1), (2) and (3)
_ Uy + U
Voo = 5

i.e., within thin airfoil approximation, the average of top and bottom surface velocities at any point on the
mcl is equal to the freestream velocity.

(P —Pss)  (Pu— Do)
Goo Goo

Cpl — Cpu =

_ Pt — Pu
oo
%p(uu + ug) (U — up)
Qoo
 (5)(2Va0)
V3
_ 29(s)
Voo
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