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Chapter 08: 3D Wing Aerodynamics & Lifting Line Theory

To date we have considered airfoil theory, or said another way, the 
theory of infinite wings. Real wings are, of course, finite with a 
defined length in the “z-direction.” 

Basic Wing Nomenclature 

Wing Span, b – the length of the wing in the z-direction 

Wing Chord, c – equivalent to the airfoil chord length 

Wing Tip - the end of the wing in the span-wise direction 

Wing Root – the center of the wing in the span-wise direction 

Wing Area, S 

L’, D’, M’ – two dimensional lift, drag and moment 

MDL CCC ,,  - three dimensional lift drag and moment 
coefficients 
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The flow over a finite wing is decidedly three dimensional, with 
considerable flow possible in the span-wise direction. This comes 
about because of the pressure difference between the top and 
bottom of the wing. As in two-dimensional fluid mechanics, the 
flow wants to move in the direction of a decreasing pressure 
gradient, i.e., it will usually travel from high to low pressure 
conditions. In effect the flow spills from the bottom to the top as 
shown in the figure below. 
 

 
 
The span-wise rotation manifests itself as a wing tip vortex that 
continues downstream. 
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Interestingly the “sense” (orientation, rotation) of these wing tip 
vortices is consistent with taking the two-dimensional airfoil 
circulation, imagining that it exists off to infinity in both directions 
and bending it back at the wing tips. The idea is also consistent 
with Kelvin’s theorem regarding the start-up vortex. Combining 
the two ideas one sees that a closed box-like vortex is formed. 
However, in much of the theory presented next the start-up vortex 
is ignored and we consider a horseshoe vortex. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
As shown in the figure, the vortices induce flow downward inside 
the box and upward outside the box. This flow is called the 
induced velocity or downwash, w. The strength of these vortices is 
directly related to the amount of lift generated on the wing. 
Aircraft inflight spacing is determined in part because of these 
wingtip vortices. An example is the Airbus aircraft that crashed at 
JFK a few days after 9/11. The spacing was too small and the 
Airbus’s tail was buffeted by the wake vortices off a JAL 747 that 
was ahead of it in the flight path. 

Wing Flow 

Start-up vortex 

Bound vortex 

Tip vortex 

u 

u 
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X u 

Tip vortex 
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Angle of Attack 
 
The idea that vortex motion induces downward flow changes the 
way we have to look at angle of attack as compared to the airfoil 
theory. 
 
 Geometric angle of attack, " - the angle between the airfoil 
chord line and the freestream velocity vector. 
 

 
 Induced angle of attack, "i – the angle formed between the 
local relative wind and the undisturbed freestream velocity vector. 
 

∞

=
V
w

iαtan      (5.1) 

 Effective angle of attack, "eff –  the angle formed between the 
airfoil chord and the local relative wind. 
 

ieff ααα −=      (5.2) 
 
It is important to note that this also changes how we look at lift, L, 
and drag, D. This is because the actual lift is oriented 



 28

perpendicular to the local relative wind (since that is the wind that 
it sees) not the freestream velocity direction. Because of that, when 
we go back to our original lift and drag directions (perpendicular 
and parallel to the freestream) we now see a reduction in the lift as 
compared to what we expect from the airfoil theory and an actual 
drag called the induced drag, even though the flow is still inviscid. 
 
What a Drag 
 
Induced drag, Di – drag due to lift force redirection caused by the 
induced flow or downwash.  
 
Skin friction drag, Df – drag caused by skin friction. 
 
Pressure drag, Dp – drag due to flow separation, which causes 
pressure differences between front and back of the wing. 
 
Profile drag coefficient, Cd – sum of the skin friction and pressure 
drag. Can be found from airfoil tests. Note the notation. 
 

 Sq
DD pf

d
∞

C
+

=      (5.3) 

 
Induced drag coefficient, 

iDC - nondimensional induced drag 
 

Sq
DC i

Di
∞

=       (5.4) 

 
Total drag coefficient, C  D
 

iDdD CCC +=       (5.5) 

Finite wing theoryAirfoil data
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Biot-Savart Law 
 
During our discussion of panel methods we developed the idea of a 
vortex sheet, essentially a line along which vorticity occurs that 
has a rotation sense about an axis perpendicular to the line. 

vortex sheet 
 
A similar but distinctly different idea is that of vortex filament, 
which is again a line of vorticity, but this time with rotation about 
the line itself. 
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         Vortex filament 
 
The Biot-Savart Law defines the velocity induced by an 
infinitesimal length, dl, of the vortex filament as 
 

34 r
rdldV ×Γ

=
π

     (5.6) 

 
where 

    
 dl – infinitesimal length along the vortex filament 
 r – radius vector from dl to some point in space, P. 
 dV – infinitesimal induced velocity 
 
Note that this velocity is perpendicular to both dl and r. 
 
If the vortex filament has infinite length the total induced velocity 
is found by integrating over its entire length 
 

∫
∞

∞−

×Γ
= 34 r

rdlV
π

     (5.7) 

Consider a straight vortex filament in the y-direction and a point, 
P, in the x-y plane. Equation (5.7) can be put into geometric 
functions by considering the figure below 
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dl
r

V ∫
∞

∞−

Γ
= 2
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4

θ
π

     (5.8) 

where 2 is the angle formed by r and the filament. The geometry 
gives 
 

θ
θθθ

dhdlhlhr 2sin
,

tan
,

sin
===    (5.9) 

 
which gives 
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π π
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o

∫
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−= sin
4

            (5.10) 

 
we get if we have 2=0 or B. ±∞→l
This leads to the simple result 
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h
V

π2
Γ

=                              (5.11) 

same as the two dimensional theory. 
 
If we have a “semi-infinite” filament we get 
 

∫∫
Γ

−=
Γ

=
∞ 0

20
2 sin

4
sin

4 π
θθ

π
θ

π
d

h
dl

r
V           (5.12) 

h
V

π4
Γ

=  

 
Helmholtz Theorem 
 

1. Strength of a vortex filament remains the same along the 
filament. 

2. A vortex filament cannot end in a fluid, i.e., it must either 
extend to the boundaries or form a closed path. 

 
 
Additional Nomenclature 
 
 Geometric twist – a twist of the wing about the span-wise 
axis that results in a change in the geometric angle of attack with 
span-wise position. 
 
 Washout – geometric twist such that roottip αα <  
 
 Washin - geometric twist such that roottip αα >  
 
 Aerodynamic twist – a wing with different airfoil sections 
along the span, so that the zero lift angle of attack changes with 
span-wise position. 
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 Lift distribution – the local value of the lift force. This can 
change with span-wise position. 
 
For example, since the pressure equalizes at the tip there is no lift 
there. 

 
 Lift per unit span, L′ - akin to pressure, i.e., force per unit 
area. 
 

)( yVL Γ=′ ∞∞ρ              (5.13) 
 
 

  ∫
−

′=
2

2

)(
b

b
dyyLL              (5.14) 

If the lift changes along the span it implies that there are multiple 
(perhaps and infinite number of) vortex filaments. 
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Prandtl’s Lifting Line Theory 
 
Prandtl’s lifting line theory is centered about a fundamental 
integro-differential equation. 

∫
−∞

=
∞ −
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yy

π
α

π
α      (5.15) 

 
which is used to find the circulation distribution about the wing. 
Equation (5.15) is useful if one knows the desired geometric angle 
of attack, the aerodynamic twist (i.e., "L=0), and the wing planform 
(i.e., local chord length). Two approaches are presented to make 
use of this equation. Equation (5.15) is developed from the idea of 
vortex filaments. 
 
Prandtl’s lifting line theory stems from the idea of replacing a wing 
with a bound vortex. Helmholtz theorem then requires there to 
exist trailing vortices at the wing tips 
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The Biot-Savart law allows us to determine the downwash along 
the wing and results in: 
 

( ) ( )ybybyw
−

Γ
−

+
Γ

−=
2424

)(
ππ

           (5.16) 

 
or 
 

( ) 22

2
4

)(
yb

byw
−

Γ
−=

π
                     (5.17) 

Note that the downwash is a negative number as you would expect 
from the coordinate system. 
 
However, the single vortex filament case is not sufficient to 
describe the physical conditions on the wing, because of  
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The trouble is that the downwash at the wing tips is infinite instead 
of zero. Fortunately, this can be fixed if one considers a 
distribution of vortex filaments as shown below 
 

 
 
It is important to note that the strength of the individual vortex 
filaments is equal to the jump in circulation at the point where the 
trailing vortex meets the bound vortex. This can be carried to the 
logical extreme by considering a continuous sheet of vortex 
filaments and their associated continuous change in circulation.  
 

 
In that case the downwash induced at point yo by the vortices at 
point y is given by  
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)(             (5.18) 
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So that if one integrates from wingtip to wingtip 
 

  ( )∫
− −
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   Relationship between ' distribution and downwash at yo 

 
 
Using Equation (5.1), but recognizing that w is a negative number 
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for small angles Eq. (5.1b) gives 
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Recall the two dimensional lift coefficient for an airfoil 
 

[ ] [ ]00 2 == −=−= LeffLeffol aC ααπαα          (5.21) 
 
where 
  )( oeffeff yαα =  because of downwash 
  )(00 ofLL y== = αα  because of aerodynamic twist 
but 
 

)()(
2
1 2

olo yVCycVL Γ==′ ∞∞∞∞ ρρ           (5.22) 
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then 

)(
)(2

o

o
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Combining Eqs. (5.21) & (5.23) gives 
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o
eff ycV
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π

α             (5.24) 

which is clearly a function of yo. 
 
 
Recall notes Eq. (5.2) 
 

ieff ααα −=      (5.2) 
 

and combine Eq. (5.2) with (5.24) & (5.20) to get 
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  Fundamental Equation of Prandtl’s Lifting Line Theory 
 

 
 
Once )( oyΓ  is known 

iDiL CDCL ,,, follow directly. 
 
 

)()( oo yVyL Γ=′ ∞∞ρ            (5.13) 
 

  ∫
−

′=
2

2

)(
b

b
dyyLL                      (5.14) 



 39

∫
−∞
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Two approaches can be taken from this point 
 
 

1. Direct – A wing planform is given with a 
distribution of aerodynamic twist, Eq. (5.15) is 
solved and lift and drag information extracted. 

2. Inverse – A lift distribution is proposed and the 
corresponding planform distribution developed. 
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Inverse Approach – Elliptic Lift Distribution 
 
 
Prandtl’s lifting line theory can be used in an inverse approach by 
assuming the form of the lift distribution and using Eq. (5.15) to 
determine the wing planform. The most famous example of this is 
the elliptic lift distribution which is found directly from an elliptic 
circulation distribution. 
 

221)( 
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where we can use )()( yVyL Γ=′ ∞∞ρ  to show 
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Recall that Eq. (5.19) requires 
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so that the downwash becomes 
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we can again invoke geometry and use 
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So Eq. (5.31) becomes 
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which is a standard integral form 
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b
w o

o 2
)( Γ

−=θ      (5.36) 

Downwash is constant for an Elliptical Lift Distribution 
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However, this also implies: 
 

∞∞

Γ
=−=

bVV
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i 2
α     (5.37) 

      Induced a.o.a. is constant for an Elliptical Lift Distribution 
 
 
In the end we want to determine the lift and drag coefficient for the 
elliptic lift distribution and also the shape of this wing. To do this 
we go back to Eqs. (5.14) and (5.29) 
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We can next use the definition of CL and Eq. (5.39) to give 
 

πρρ
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1 2 bVSCVL oL Γ== ∞∞∞∞   (5.40) 
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Then going back to Eq. (5.37) we find 
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Nomenclature 
 

  Aspect Ratio, 
S
b2

AR =   (5.43) 

 
 
 
 
So that 

AR
CL

i π
α =       (5.44) 

 
We can then get induced drag from Eq. (5.27) 
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Which can be rewritten by substituting Eqs. (5.41) and (5.44) into 
(5.45) 
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2
LD CC

i
∝  - a typical drag result 

 

AR
C

iD
1

∝  - use high AR wing (long and thin) 

 
 
 

But what’s the geometry?!!! 
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The geometry can be found by going back to the lift coefficient 
and Eqs. (5.23), (5.21) and (5.2) 
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)(2
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l ycV
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∞

Γ
=     (5.23) 

 
[ ]02 =−= LefflC ααπ           (5.21) 

 
ieff ααα −=     (5.2) 

 
Then using the idea that the induced a.o.a. is constant and if there 
is no aerodynamic twist we see from Eqs. (5.21) and (5.2) that 

 
.constCl =     (5.47) 

 
   Elliptic Lift Distribution 

 
Combining Eqs. (5.47) and (5.23) gives 
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With the end result:  
An elliptic lift distribution is found from 
an elliptic wing planform. 
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Application of Prandtl’s Lifting Line Theory for an Elliptic Wing 
 
The previous section demonstrated that an elliptic wing planform 
develops an elliptic lift distribution but did not answer the question 
of how one can find the aerodynamic properties of an elliptic wing. 
Consider an elliptic wing 
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It is clear from Eq. (5.23) that lC  can be written in terms of but 
Eqs. (5.21) & (5.2) also show that 

oΓ
lC depends on iα , which in turn 

depends on LC , which then depends on an integrated value of lC . 
What’s needed is a way to close the loop. To do this consider again 
Eqs. (5.23), (5.21) and (5.2) 
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Therefore, given the root chord, span and airfoil shape can be 
found. Upon rearranging Eq. (5.41) 

oΓ
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bC o

L
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Γ
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    (5.41b) 

and from Eq. (5.46) 
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Example Problem: Consider an elliptic wing with 10m span and 
2.5m root chord. If the wing is made up of NACA 64-210 wing 
sections and is flying 50m/s at a geometric angle of attack of 8 
degrees, compute  
 

1. LC and 
iDC  

2. L and  iD
3. The acceleration of this wing if it has a mass of 1 Mg at 

sea level. 

 
NACA 64-210  
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The chart shows that o

L 8.10 −≈=α , so that 
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Lift and Drag calculations 
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So it can lift 2.38Mg 
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Acceleration calculations 
  
     kNkNkNFnet 3.138.91.23 =−=  

+

W=9.8kN

L=23.1kN

                     
ga 36.1≈r  

 
 
Exercise: Develop LC and 

iDC over the range of a.o.a from 
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Elliptical Wing Lessons: Design Considerations 
 
Equations (5.50), (5.41b) & (5.46) give us a clear path for the 
aerodynamic analysis of an elliptical wing of given dimensions and 
airfoils. On the other hand, the analyst’s job is to determine 
properties of a given wing, a designer’s job is to decide the 
geometry itself so that it reaches a specific design objective. This is 
a distinctly different skill. The above equations can give the 
designer some insight if they are manipulated properly. Of course, 
one should be careful about drawing conclusions for a general 
from this analysis since it applies strictly to elliptic planforms, but 
it turns out that other wings behave similarly for many parameters, 
although their analysis is more complicated. 
 
Start by again considering Eq. (5.50) 
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To get that information we need to consider Eq. (5.41b) 
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Therefore if keep the wing area the same LC goes up with b. Note 
that this result drops back to the two-dimensional airfoil result as 

.  ∞→b
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How then does this result affect the induced drag? Eq. (5.46) says: 
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which says that 

iDC decreases as b increases. This is because 

lL CC →  as b  and hence ∞→ 0→
iDC . 

 
Hence the compromise comes to life between what can be built 

and what is aerodynamically efficient. 
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General Lift Distribution 
 
Our previous analysis for the elliptical wing utilized an elliptic 
circulation distribution shown in Eq. (5.28) 
 

221)( 





−Γ=Γ

b
yy o    (5.28) 

This form was simplified by the geometric transformation 
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When combined, Eq. (5.28) becomes 

θ
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The utility of this transformation is apparent, however, its impact is 
much bigger because it suggests the use of a sine series to 
represent any circulation distribution. The basic idea being that the 
circulation can be written as 

θnAbVy
N

n
n sin2)(

1
∑

=
∞=Γ    (5.51) 

Why should this work? 
 
First off, let’s assume that this series is a reasonable approximation 
of the actual circulation function and further assume that you can 
find values for the N constants, . Then recall what was done for 
the elliptical wing planform; we started things out not knowing 
what isΓ , but by rearranging equations we were able to determine 
it in terms of the velocity, root chord, span and airfoil shape. In 
addition, all of this information was obtained at a single location, 
the wing root. 

nA

o
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If we use equation (5.51) for a general airfoil, there are now N 
unknown coefficients needed to determine the circulation. These 
coefficients will be determined later by using conditions and 
geometry at N locations on the wing. However, before we do that it 
is important to recognize why Eq. (5.51) might be reasonable. 
 
Fourier Sine Series 
 
A very useful engineering tool is the Fourier Series, which is 
essentially a summation function composed of sines, cosines or 
both depending on the function to be represented. Mathematicians 
have proven that any function can be represented by infinite series 
of this form and practical experience shows that only a limited 
number of terms are needed to get a reasonable approximation. 
 
The functions themselves look as shown below for the first 5 terms 
 
 

 

Fourier 

Sine 

Cosine 
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A severe example of its application for a square and a sawtooth 
wave are shown below 
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Dr. Orkwis has used this approximation approach to represent the 
wakes behind a turbine stator and found that only 4 terms were 
needed to get about 95% of the total energy. The approximation 
functions are generally good representations of the actual functions 
if the actual function is smooth. Discontinuous functions like 
square or saw tooths produce “ringing” or “Gibb’s phenomenon” 
unless a very large number of terms are included. Fortunately, 
wing circulation distributions are usually quite smooth and require 
relatively few terms. Keep in mind that finite wing theory requires 

both )( yΓ  and 
dy
dΓ

, so ringing can be a problem as the derivative 

can be badly distorted even though the function is well 
represented. 
 
 
Application to Prandtl’s Lifting Line Theory 
 
As stated above, Eq. (5.51) must be differentiated to be used in the 
Prandtl Lifting Line Theory. We get 
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Substitute the above into Eq. (5.15) 
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where the integral is the familiar standard form used earlier, so that 
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Which can be used to find the N, ’s if Eq. (5.54) is evaluated at 
N, 

nA
oθ values. A system of equations is thus developed and easily 

solved. We should recognize that the original elliptic wing still 
lives in this equation if we compare Eq. (5.54) to Eq. (5.15) and 
note that N=1. 
 
As before, everything follows once )( oθΓ  is known. LC comes 
from Eq. (5.25) 

∫
−∞

Γ=
2

2

)(2
b

b
L dyy

SV
C    (5.25) 

∫∑

∑∫

=

=
∞

∞

=







−=

π

π

θθθ

θθθ

01

2

1

0

sinsin2

sin
2

sin22

dnA
S
b

dbnAbV
SV

C

N

n
n

N

n
nL

      (5.55) 

and, of course, an integral table will reveal that 
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So no matter how many terms you have in the series, it is only the 
first one that matters for LC , i.e., 

ARAA
S
bCL ππ 11

22
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Keep in mind though that  is part of a system of equations and 
as such depends upon . 

1A
AK NA2
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Next, for the induced drag we need iα  as indicated by Eq. (5.27). 
Again, Eq. (5.20) says 
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which by comparison to Eq. (5.53) is  
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or from Eq. (5.54) 
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We then go back to Eq. (5.27) 
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Upon further evaluation 
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Which is easily evaluated since 
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Hence, the only time the integrals yield something is when n=m. 
So 
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or equivalently 
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which we can write as 
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Eq. (5.62) should be compared with Eq. (5.46) for the elliptic 
wing. Yet another way to write Eq. (5.62) is 
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Nomenclature 
 

 Span efficiency factor, e – where 
δ+

=
1

1e   (5.64) 

Clearly e=1 for an elliptic wing. 
 
 
Elliptic vs. Rectangular Compromise: The Tapered Wing 

     
 
Nomenclature 
 

 Taper Ratio  
r

t

c
c

≡  

The idea is to match closely the elliptic wing planform, i.e., chord 
lengths of similar size, and thereby match the elliptic lift 
distribution. 
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Clearly, * has a minimum for a taper ratio of about 0.3. 
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Numerical Lifting Line Theory 
 
The lifting line theory assumes a linear lift curve slope, as such, it 
does not predict the nonlinear or stall regime. Anderson describes a 
numerical lifting line process  

• Assume a )( yΓ  
• Calculate iα  
• Calculate effα  
• Use tabulated data for LC to compute )( yΓ  
• Iterate until convergence 

The beauty of the technique is that it works in the nonlinear/stall 
regime, however, it requires significant table look-ups, which are 
slow. 
 
 
Vortex Lattice Method 
 
A disadvantage of the lifting line theory is that all of the action 
associated with the bound vortex occurs at the quarter chord point, 
such that only the lift and drag coefficients are computed but not 
the moment coefficient. Unfortunately, the moment coefficient is 
essential to the performance calculations. An answer is found in 
the vortex lattice method which not only provides the pressure 
distribution but also anchors the results to the actual geometry 
rather than implicitly through the 0=Lα . This is essential not only 
for calculating moments but for many practical wing planforms 
like delta wings. 
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Essential ideas:  

• Panel the wing with discrete spanwise, γ , and 
streamwise,δ , distribution of vorticies. 

• Set a “control point” somewhere on this panel to apply the 
flow tangency condition. 

• Biot-Savart to determine the induced velocity from all 
points. 

• Solution of a system of equations determines the discrete 
vorticity distributions via the downwash equation: 
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(5.65) 

 
Note that the wake is also included. 
 
Another way to look at this is as a system of horseshoe vortices, 
each one applied over a single panel with a bound vortex at the 
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quarter point of the panel. The control point is again defined to 
apply the surface tangency condition. 
 

 
 
The wing is then tessellated with a vortex lattice system like that 
shown in the figure. 
 

 
 

Once again the velocity contributions are determined from each 
horseshoe vortex and using the flow tangency condition and we are 
left with a system of equations for the unknown circulations. 
 
Note that this approach is applied in the plane of the airfoil, not 
along the airfoil so that we are really still making a thin airfoil 
assumption. 
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3D Panel Methods 
 
The next step in the hierarchy of techniques is a direct extension of 
the 2D source and vortex panel methods, a 3D panel method. The 
text describes these methods briefly and develops the 3D source 
and doublet.  
 
Basic Idea:  

• Distribute sources, doublets or vortices on the surface 
of a body. 

• Apply the flow tangency condition. 
• Solve for the unknown source, doublet and vortex 

strengths. 
 

 
This approach is widely used in the industry for preliminary design 
considerations and allows us to apply the surface tangency 
conditions to all points on the wing. A large code is written for this 
purpose and generally takes a good deal of effort to define the 
geometry and apply the method.  
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Separated Flow – Vortex Lift 
 
While we are discussing the inviscid flow about a wing we need to 
consider what happens if the flow is massively separated. In most 
instances this is a bad thing as it will disrupt the orderly flow about 
a wing and lead to pressure drag. However, the case of a delta 
wing this is an entirely different issue as separated flow actually 
results in enhanced lift, vortex lift. 
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As illustrated in the figure, severe flow separation and 
reattachment occurs for the delta wing. The vortices account for 
lift on the wing because they cause the local pressure to drop 
considerably. 
 

 
 
The methods we have discussed so far are not good candidates for 
predicting these flows; one has to resort to full computational fluid 
dynamic analysis, i.e., the field solution of the Euler or Navier-
Stokes equations, which is beyond the scope of this class. 
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Moments 
 
An advantage of the vortex lattice method, the 3D panel methods 
and CFD, as compared to the lifting line theory, is that the pressure 
distribution is computed and hence moments can be found. To 
recall the details of this process we need to go back to some basic 
mechanic. 
 
Consider an airfoil as a beam with distributed loads defined from 
the pressure. 
 
 

TE 
LE 

 
 
 
 
 
 
We recall that the pressure is a force per unit area and that a force 
is defined once the pressure is integrated over an area. In the case 
of an airfoil we only integrated in x, since they direction (as 
defined for a wing) has unit length. We can then use these ideas to 
come up with moments about a point on the wing. 
 

( ) )1(xdxCCM
TE

LE
PPLE BotTop∫ −=   (5.66) 

 
However, the moment could as be represented in terms of the 
resultant force, R. 
 

CPLE RxM =      (5.67) 
 
where CPx  is the point at which the resultant of the integrated 
forces acts to generate the same moment about the LE.  
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Let’s return now to an airfoil: 
 

 
 
Note that 

1. The chord line is a straight line that connects the LE to the 
TE. (Not the mean camber line) 

2. Axial force is assumed to act along the chord line, 
therefore no moment is developed because of it. 

3. Normal force acts normal to the chord line at the center of 
pressure. 

4. Moment is defined positive clockwise, therefore, a 
positive lift force results in a negative LEM ′ . 

 
 

N
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′
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5. The moment coefficient about the center of pressure is 

zero. 
6. Moments can be defined about the LE and the quarter 

chord point. If 0≈α  then NL ′≈′  and 
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This idea can be easily extended from the airfoil to the wing by 
turning Eq. (5.66) into a double integral. 
 

( )∫ ∫
−

−=
2

2

b

b

TE

LE
PPLE xdxdyCCM

BotTop
   (5.70) 


	Basic Wing Nomenclature
	Angle of Attack
	What a Drag
	Biot-Savart Law
	Helmholtz Theorem
	Additional Nomenclature
	
	Fundamental Equation of Prandtl’s Lifting Line Th
	Once � is known �follow directly.



	Two approaches can be taken from this point
	
	
	Nomenclature
	
	
	The geometry can be found by going back to the lift coefficient and Eqs. (5.23), (5.21) and (5.2)



	Lift and Drag calculations
	Acceleration calculations

	Fourier Sine Series
	Application to Prandtl’s Lifting Line Theory
	Nomenclature
	Elliptic vs. Rectangular Compromise: The Tapered Wing
	Nomenclature
	Vortex Lattice Method
	3D Panel Methods





