2024 Spring Semester AerE310 Course
Homework Problem Set #04:

Problem#1: Consider the incompressible, irrotational, 2-D flow where the potential functions is:

¢ =K In(yx* +y?), where K is a constant.

a) What is the velocity field for this flow? Please verify the flow is irrotational. What is
the magnitude and direction of the velocity vector at (2,0), at (\/5, \/E) and at (0, 2)?

b) What is the stream function for this flow field? Sketch the streamline pattern.

c) Sketch the lines with constant potential values. How do the lines of equipotential
related to the streamlines?
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Problem#2: The equation of the streamlines in a two-dimensional velocity field are given by the

expression of y = xy + y* + const.
a) Pease find the expression of the flow velocity vector and the magnitude of the velocity

vector.
b) Please find the integral over the surface shown in the figure for the normal component

of vector of VxV by two methods.
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Problem#3: Given an incompressible, steady flow, where the flow velocity is
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Problem#4: What is the stream function that represents the potential flow about a cylinder whose
radius is 1.0m and which is located in an air stream where the free-stream velocity is 50m/s?

What is the change in pressure from the free-stream value to the value at the top of the
cylinder (i.e., & =90°)? What is the change in pressure from the free-stream value to the

value at the stagnation point (i.e., # =180°)?
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Problem#5: A two-dimensional free vortex is located
near an infinite plane at a distance h above the @ Vortex of strength I
plane as shown in the figure. The pressure at i
infinity is P, and the velocity at infinity is Us, . h
parallel to the plane. Please find the total force
(per unit depth normal to the paper) acting on
the plane if the pressure on the underside of the »
plane is P The strength of the vortex is I". The "
fluid is incompressible and perfect. To what expression does the force simplify if h

becomes very large?
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Problem#6: Inan ideal, 2-D incompressible irrotational flow field, the fluid is flowing past a wall
with a sink of strength K per unit length at the origin as shown in the Figure. The potential

function of a 2-D sink is ¢ = _ZL In «/x2 +y® . At infinity the flow is parallel to wall and
T

of uniform velocity Us .
a. Determine the location of the stagnation point X0 at the wall in terms of U and K.
b. Find the pressure distribution along the wall as a function of X. Taking the free
stream static pressure at infinity to be P, express the pressure coefficient as a
function of 0 X/Xo .
c. Sketch the resulting pressure distribution.
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Problem#7: A cylindrical tube with three radially drilled orifices, as shown in the figure below
can be used as a flow-direction indicator. Whenever the pressure on the two side holes is
equal, the pressure at the center hole is the stagnation pressure. The instrument is called a
direction-finding Pitot tube, or a cylindrical yaw probe.

a) Ifthe orifices of a direction-finding Pitot tube were to be used to measure the freestream
static pressure, where would they have to be located if we use our solution for flow
around a cylinder?

b) For a direction-finding Pitot tube with orifices located as calculated in part (a), what is
the sensitivity? Let the sensitivity be defined as the pressure change per unit angular

change (i.e., op/08)
< N\

[
Vs

Fer a lemclnca,l \tau-l ?robe WQ. S&'Q'hc ’PW-SSLLFQ

arotmd 'H/\e, - ualmda(‘ u)he_(‘e Hr\e, (Jrc.‘s‘:‘.ure, Ortc\CES are, |
(oe. awmumahg. b‘j ES( (3. "r‘b Wﬁj

Cps P s g guce

(C\B r&r +lne ortf-me,s_ \oca:hzcl uit/»er& ‘P "D‘D, or QP O.
Thus, ooe_ QE—V\ 30\\.}& ou.l“ eXPt‘LSStm ‘FO«‘C? ’h’ g‘“‘\d H’\ET F
- 1- 4Sm"'9 20 > then 9 30°or 150° |

Ge., 'HAE‘Se_ Oft—imCM A‘MN\.A be‘ -"' 30 Prm H\g shanwhb\z\
/'?0—“-—',(\ .
() To Rl BB b ek g G- T
TKLLSJ. g—g ‘85;00 S\r\@ ct:.sg
mQA.(cl{ ok @' 30 be,cuwa_s | éﬁ- = - 34@-‘?%@ |




Problem#8: Consider the flow around the Quonset shown in the figure to be represented by
superimposing a uniform flow and 2-D a doublet. Assume steady, incompressible, potential
flow. The ground plane is represented by the plane of symmetry and the hut by the upper
half of the cylinder. The free-stream wind velocity is 30 m/s; the radius of the hunt is 10m.
The door of the hut is not well sealed, and the leakage opening is very small compared with
the radius of the hut R. Therefore, the static pressure inside the hunt is equal to that the
outer surface of the hunt where the door is located. Density of air p=1.2kg/m°.

a) If the door to the hunt is located at ground level (i.e., at the stagnation point), what is
the net lift acting on the hunt?

b) Where should the door be located (i.e., at what angle 09 relative to the ground) so that
the net force on the hut will vanish?

V.=30m/s

Solution:

The hut can be considered as a semi-cylinder, and
the pressure distribution on the outer surface of a
cylinder is

PP Pk i _4sin?e = P=P +q_(1-4sin’8).
q..

C,= l
—pV 2
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Therefore, the pressure on the outer surface of the cylinder willbe P=P_ +¢_(1—4sin> @)
Then, the total force per unit span along Y direction at the outer surface of the cylinder will be:
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The pressure inside the hut is P, then, the total life force per unit span at the inner surface will

be: L, = +jG”R.R sin@dé = RRJ:sin 0d6 =2PR
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Therefore, the net lift acting on the hut willbe: L=L, +L  =2PR-2P R+ 3 Rq.



For the question A. when door is on the ground, P. = P,__ = P_+g¢_, . then, the total lift forceper
10 16 16 _1
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(P, +4q.) . 3 V4. =5 R, =R P
= 24,000 p =24,0001.2 = 28,800N

For the question B, when lift vanish, L=2PR-2P_R+ gR q.. =0. Since

unit span will be:
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