2021 Fall Semester AerE310 Course
Homework Problem Set #05:

Due: Midnight, Sunday, 11/07/2021

Problem#1: A hill with the height 4 has the shape of a half circle as shown in figure below. The
wind approaching the hill has a constant velocity parallel to the ground, Uco. Assume the stream
function is in the form of ¥ (r,0) = rnsinég.

e Find the value of n such that the flow is —
irrotational. —
e Use the surface (hill) streamline (y=0)
and the fact that at far field (r—ox), the
stream function approaches to that of a
freestream (Uoorsing) to formulate the final form of stream function in terms of the given

parameters (4, Ux).

Solution:
a. PY(r,@)=r"sing@
1 dyfr ne1
7 g? = r cos &
= 2 — n—1 s
e = ar mn? sin &

For irrotationality o, = 0

a a
— — —— | - mn—1 —
3 EY: 0 — 3 (—nr" sin @) ET: (r cos8) =0

T

1 [3 (rva) 81.*,.] _

- —nZr*lsing 4+ " lsin® =0 —= (1 —n?)r""1sind =0

For this to be always zero
1—m?=0—=n=4+1

b. There are two valid solutions, therefore the stream function can be written as the superposition
of the two. In a general form
B
Y = Arsinf + Br lsinf = (Ar —l——) sin &
T
With 4 and B as constants that must be determined.
r—oo: P — U_rsinf (Uniform flow)

— Arsing = U_rsind — A =0U_

To find the yr value for the streamline representing the hill, evaluate 4y at a point on the surface:
By .
r=h068=0— Umh+£ sin(0) =0 —= iy, =0

Therefore (Umh + %) sin & = 0 is the surface (hill) streamline.

™

Now evaluate at+ = h, 8 = >

Unh+2)sinE =0 B=—U_h?
(m +ﬁ)51uE_ — B =—U_

Then the final form of stream function is

J:
Yl(r,8) = U, (r — L—) sin &
r



Problem#2: Consider a row of vortices of equal strength, 75 and equal spacing, a, as shown. The
number of vortices is N+1.

e Write the stream function for the resulting |
flow field and determine velocity components . ,:f P S
u,v in the Cartesian system. ETENENTENTEN NN *
e Calculate u and v for a=1, v=10m at points ¢ @ a a a a a a

(x, y) = (1,10) and (1, —10) for N+1=1, 101

and 1001. Assume these vortices are symmetrically placed with respect to y axis.
This problem illustrates the concept of a vortex sheet. For sufficiently large y values, the flow
above a vortex sheet is essentially uniform. There is no velocity normal to the sheet at sheet
surface and horizontal component of velocity changes sign across the sheet.

Solution:
yl
Iy
"]
e \I ]
a @
Consider a single vortex at location h = ia, i = —g, ,%and write the induced velocity at an
arbitrary point (x, y).
I'n
Ve T T T O
In Cartesian coordinates
bis
u; = v, CDS{E — 8;) = vg,sind;
. T
v; = —p, sin (E — 6',—) = —wg, cos B;

Also
7= (x —h)? 497 = (x — ia)® + 7

A ¥y x —ia
sinf; = — ,cos8; =
T Tz
S Ty zz_ra b
t 27y 7 2w (x —ia)? + v2
Ih x—ia Ip x —ia
P— =
Y2y w 2w (x —ia)® + y2

Mow add the contribution from all the vortices by summing over index i:

NSz nNyz
s = Y wm=l S ¥
’ i — i) 2
i=—N/f2 2m i=—NS2Z (x ia)® +y
NSz Nyz
C ) Z Ip x —ia
vix,y) = vy =5 o
2 — 2 ]
i=—N/2 ﬂ_i=—N,-"2 (= Ut

Substitute a = 1, = 10 and evaluate the summations for various Ns. The numerical value of
u and v for points (1,10) and (1,-10) are shown in the table below.
Point (1,10) (1,-10)

Velocity u EEl u L5
5.3745 -0.4396 -5.3745 -0.4396
13.7711 -0.1888 -13.7711 -0.1888
15.5084 -0.0200 -15.5084 -0.0200

N=10,000 15.688 -0.0020 -15.688 -0.0020

For large N values, the flow is nearly fully unidirectional along x axis and 1 — 0. The horizontal
component of velocity is symmetric with respect to x axis. This is a vortex sheet!
Also note: u(1,10) — u(1, —10) = 15.688 + 15.688 = 31.376 & 10w = I



Problem#3: Based on the thin airfoil theory, the vorticity distribution along the mean camber
line of a symmetrical airfoil can be expressed as:

6 =0 for leading edge
y(0)=2aV, l+_cosg,where . g 0 :
sin@ 6 =z for leading edge

a) Prove that the Kutta condition for airfoil trailing edge is satisfied
b) What is the physical significance of 2y /V_?

c) What angle of attack is required for a symmetrical airfoil to develop a section of C; =0.5?
Sketch the distribution 2y /V_ as a function of x/c for a section lift coefficient of C; = 0.5.

d) Using the vorticity distribution to calculate the pitch moment about 0.75 chord from the
leading edge. Verify your answer using the fact that the center of pressure (Xcp) is at the
quarter chord for all angles of attack and the definition for lift.

Solution:

Question — a:

The Kutta condition states that that for a given airfoil of a given angle of attack, the value of
circulation (I") around the airfoil is such that the flow leaves the trailing edge of the airfoil
smoothly. i.e., »(TE)=0.0

2aV,_(1+cos)
sin @

c
For a symmetrical airfoil, 7(6) = where X = > (1-cos )

At the trailing edge: X=C = 6O=rx
2aV, (1+cosb)| 0

Therefore at trailing edge: 7(0)|,_ = o o =0 =7
According to L’ Hospital’s role:
2aV (1+cosd 0 ,2aV_(1+cosd , —2aV_sing 0
70, = 2eV=trcos) 0 _ 2V, Urcosh)| ) =20
sin @ |9:” 0 sin @ |g:,, cosd |g:” -1
= 7(©0),., =0

Therefore, the Kutta condition is satisfied.



Question — b:
Note Hhat € hag the units of velocity. The incre nien—
h\ lT("t' (?Qf U.m.j\' 3?&!\.) aC.Hl\S on an iﬂ&h: e_STma\ CJ'LOPCJ\UI-&E_

Slement is Qwen bj the KuHe - Toukowsk: tHhesrens as:

dl= 4oUs &
Butr the increment & \TBY (Pcr unit SY)an\ aeching o 2N
e dv @e_re.nce_

nRnitesimal hordwice element is e‘i—u”a\ 4o
in the pressure ac’dr\g on e [ower sucface and that acsh‘r\j

6N the upper- surface
al = AP = 4?9_-)?\:. = (?L"'Pw\ = (‘Pu.—fw\
Eq(\wj-‘mj the two expressions o the incemental 7 ft:
' ‘fa: Uu: ,( — (’PL"’PC‘J\ i C'Pw- ’Poa\

2
o = Cpu- G = #x [12c20

|
—\'\"\5) H\e, 'Paramd'er %Z. r‘cr?rcse,ud"s the &T%‘*"C@' bﬁh—*ce/

o

':': ?PC-SSUJ'Q CQeQ—Q—Ic_iM-\- Cor Hre ‘Ow Su.r'ﬁa,c,e and +L\&+
the wpPer surface. 2t a aiven cherdwise sdatim

Question —c:

S\ - 2 i < )
wce \C’} = 21y . dhe vaa\e of akkack r*cq(w‘rc& to d@do‘o
3 Seation [ift celictent ol 0.5 is £56°= 0.039¢ rad-
1208 Tus, the load distribution for a Qlat— plate
B\r-Po;,l w hzela deoela(n a secthon &t coeflicient of

0.5.s dhat qiven in the followr I\S table.,

< Sl 2 z :
90 = 1(1-c089\ Tfi 6 g=%(4-6059s my
o° 0.000 o0 120° 0. 150 0.1831
i§° 0.063 1.1819 43%° 0.854 0.1318
0.
e 146 0.184 (S¢° 0.933 0.083%3
G.250 - 05513 180° 1.000 0.0000

90 C.S00  0.3183



Question —d:

Lot "as ealeulate e section vhoment Coc-ﬂﬁ‘arm-{;—

about 2 point 0,75 a,y @ TR LT

leading edqe.
SO;Q‘SQ Moment is ?osi%'lve,. R

10c
o A'\; c\?(o,—-sg-g\ g g APdE(}'-a.Kc)

0.7Sc_

Woas. = (.75 S: Apdg — KC A,Pg,é_}

(P 6la)

c [eadi X unit- span)
X 4 go )"\'? d 5 a,d,f;:i | traila

. ' edge
e o

and thet the ?ihl\;,j _'l - "z:_”‘
moment— about the \a&ims edqe is?
C
W, = — SO A'P S d‘§
Thus, Cq(‘*wHM (e 6‘188 can be wartten: ,
Mozs. = O0F5e AL *F'im, =<o,;c'5c_)(ﬂ-f” U o/c)

ar . % i L z 2
—zfeoUwo(c,‘ = 5 SeVedC

Sincc, ‘H‘\e, H\e.ord-icz,\ ‘OC&Q‘RM Og 'H'Ve- CQ’N!'UO'Q'
Pressure foc 2 flat- plate atrfoil s at l—JweQ(wH-Er
cherd, we can caleulate the moment sboud He
‘Hnre.e-—qfko_r\—tr ehocd, ?o\‘/d' s

MO.?FQ_ = X' CO'SQB

wheree L 5 the it per unit span, is 2 force that
aets e‘?‘?e—c:ﬁve,\‘») at the GT‘un.H-e_r chord and O.Sc Is
the moment arm. A posihive Cnose_-—v-P\ MomenT fesults

whea the W& is positve. Thus,

- db > =
Mosge = E oo Udiude




Problem#4: For the parabolic-arc airfoil shown below, find the equations for lift coefficient c:
and moment coefficient at quarter chord, cm,c/a.

vy = 16;(1 —f) mm

Solution:
The equation of mean camber line is:

1 x X
Ne = E(yu +y) = 12;(1 _E) mm

The derivative

dn, 12 X X 12 2x
= 1 _———— = 1 -
dx c ( c C) ( )
Change of variable to 8

x 1 dn, 12 12
—=—(1—cosf) = () =—[1—-1(1 —cosB)] =—cosb
c 2 dx c c
1 ("dn.(6 12 (™
Aoz—f F’:()dﬂz— cos@df =0
m)y, dx mc J,
2 (™dn.(0) 24 (T 12 (™ 121 1 w
1 =—f ———cos0df =—| cos?0df =— | (1+ cos20)do =—[9 +—511129]
TJg x mc J, mc Jg mc 2 0

T

24
cos 20 do =—j cosBcos28d6 =0
mc J,

2 =
T

L2 f:dnc(e)

Now calculate a;_ and ¢

Moment coefficient



Problem#5: The NACA 4412 airfoil has a mean camber line given by:

X xN 2 X
0.25 [0.8— — (—) ] for0 <—< 04
Ne c c c
X X 2 X
0.111 [0.2 +085— (—) ] for04<=-<1
C C C

Using thin airfoil theory, calculate
e ai=0 and c; when a=3°.
®  Cmcaand xcqp/c for a=3°.
e Compare the results of part (a) and (b) with experimental data of NACA 4412 airfoil
given below.
e Lift per unit length of span and circulation for an airfoil with chord length of 2m flying at
a standard altitude of 3 km and velocity of 60 m/s (same angle of attack of 3°).
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Aerodynamic characteristics of the NACA 4412 airfoil.



Solution: (a).

X X X
dne _d(n./) _ |02 o8-2(3)|=02-05> for0 << 0.4
dx d(x/c)

x X x
0.111 [D.H — 2 (E}] = 0.089 — D.EEEE for 0.4 < - =1

For§= 0.4 & f =2(1—cos#) - cos@ = 0.2 —» 8 = 1.369 rad

dn, _ {D.E —0.25(1 — cos#) = —0.05 + 0.25 cos f for0 <8 < 1.369
dx (0.089 —0.111(1 —cos#) = —0.0223 + 0.111cosf for1.369 <8 <m

df

1 [™dn.(6
Au=—f n:(6)
m), dx

1.369
= —J. (—0.05 + 0.25cos 8)d#
T Jy

1 T
- —J‘ (—0.0223 + 0.111 cos 8)d8 = 0.0089
T Jy369

cos @ df

J‘ﬂ.-]_:
T

2 ["dn®
. dx

1.369
=—J- (—0.05 + 0.25cos ) cos 6 dO
TJo

1 14
-I——J. (—0.0223 + 0.111 cos @) cos 8 df = 0.163
T J1369

cos 28 df

2:

2 J‘ "dn.(6)

m X

1369
= —J- (—0.05 + 0.25cos &) cos 260 dB
mJo

l Fi 3
+ —f (—0.0223 4+ 0.111 cos @) cos 26 dB = 0.0277
T /1369

Ay 0.163
=9 = Ao —— = 0.0089 ——— = —0.0726 rad

HL;G = _4-15‘:'
o = 2n(a + 0.0726)

Fora = 3° = 0.0524 rad — ¢; = 0.7854



Cm

T T
e E [Ag — Al] = Z{ﬂ.ﬂz?? = D.163) = —0.1063

Ter —1[1+H(,4 A ]] = 1[1+ T (0.163 002??)]
4 g b THL 4 0.7854 ° '
xvl:'
£ =0.3853
c
Comparison with experimental data
Inviseid theory Experiment Error (%)
(i) 0.7854 0.76 3.3
Cmey -0.1063 -0.095 11.9
1 kg
L' = Epm V.ige, P = 0.9093 — (standard atmosphere h=3 km)
m
1 N
L =E{{]Hﬂ?ﬁ](602)[0.?854){2) = 25?1E
L 2571 m?
I'=p V.I3T= =47.12—

T puV. 0.9090 X 60 <



Problem#6: The question is often asked: Can an airfoil fly upside-down? To answer this, make
the following calculation. Consider a positively cambered airfoil with a zero-lift angle of —3°. The
lift slope is about 0.1 per degree.
a) Calculate the lift coefficient at an angle of attack of 5.
b) Now imagine the same airfoil turned upside-down, but at the same 5° angle of attack as
part (a). Calculate its lift coefficient.
c) Atwhat angle of attack must the upside-down airfoil be set to generate the same lift as that
when it is right-side-up at a 5¢ angle of attack?

(XF=0
+ar
—
—)
—_—
a(®)
//
//
Solution:

a. The lift coefficient for standard airfoil is
c; = 0.1(a + 3), @ in degrees

a=5-¢=010565+3)—->¢ =08

b. For upside-down airfoil lift coefficient is
¢, =—01(—a+3)

a=5"—>¢=-01(-54+3)=02->¢ =0.2

c. Togenerate same 0.8 lift coefficient
0.8=-01(—a+3) - a=11°



