AerE 545/AerE445 class notes

LECTURE 08: SHADOWGRAPH, SCHLIEREN & INTERFERO **TECHNIQUES: PART - 01**

Dr. Hui Hu

Martin C. Jischke Professor in Aerospace Engineering Dept. of Aerospace Engineering, Iowa State University 537 Bissell Road, Ames, Iowa 50011-1096, USA. Tel: 515-294-0094 (O) / Fax: 515-294-3262 (O)

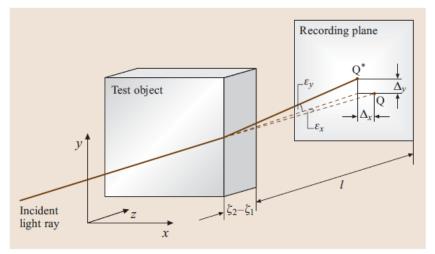
Email: huhui@iastate.edu

SCHLIEREN IMAGING IN SLOW MOTION

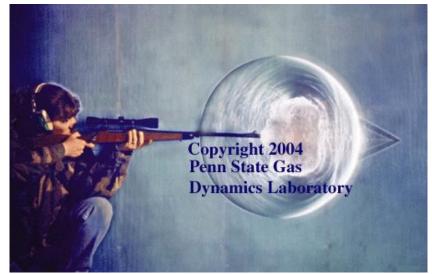
How Well Do Masks Work? (Schlieren Imaging In Slow Motion!)
 https://www.youtube.com/watch?v=0Tp0zB904Mc

Credit: Matthew Staymares/NIST

Index of refraction and thermodynamic state

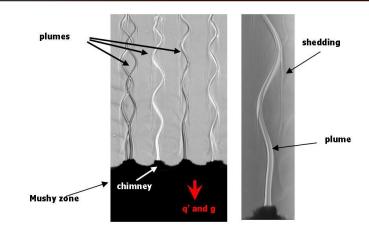

- Index of refraction is a function of thermodynamic state (density) for homogeneous medium:
- Lorenz-Lorentz relationship: $\frac{1}{\rho} \frac{n^2-1}{n^2+2} = K$
- When $n \approx 1$, for gaseous flow: $\frac{n-1}{\rho} = K \implies K\rho = n-1$ Gladstone-Dale Eqn
- At standard condition, with n_0 and ρ_0 : $\frac{n_0 1}{\rho_0} = K \implies n 1 = \frac{\rho}{\rho_0} (n_0 1)$ $\Rightarrow \rho = \rho_0 \frac{n 1}{n_0 1}$
- First- and second-derivative is determined by schlieren and shadowgraph apparatus: $\frac{\partial \rho}{\partial y} = \frac{1}{const} \frac{\partial n}{\partial y} \implies \frac{\partial \rho}{\partial y} = \frac{\rho_0}{n_0 1} \frac{\partial n}{\partial y}$

$$\frac{\partial^2 \rho}{\partial y^2} = \frac{1}{const} \frac{\partial^2 n}{\partial y^2} \implies \frac{\partial^2 \rho}{\partial y^2} = \frac{\rho_0}{n_0 - 1} \frac{\partial^2 n}{\partial y^2}$$



Shadowgraphy and Schlieren Techniques

- Index of refraction: $n = c / v = \frac{\lambda_0}{\lambda} > 1$
- Depends on the variation of the index of refraction in a transparent medium, which affects the light rays passing through.
- Shadowgraphy: used to indicate the variation of the second derivatives (normal to the light beam) of the index of refraction.
- Schlieren systems: used to indicate the variation of the first derivative of the index of refraction


Fig. 6.1 Refractive deflection of a light ray in an object field (flow) with varying refractive index (caused by varying fluid density)


Schlieren of a .30-06 caliber high-powered rifle muzzle blast from (by Gary S. Settles)

Shadowgraphy and Schlieren Techniques

- Shadowgraphy and Schlieren systems are often used in shock waves and flame phenomena, in which density gradient is quite big.
- While these techniques are mostly used for qualitative flow visualization, they can be used to map pressure, density, or temperature measurements theoretically.
- These techniques are often used to determine the integrated quantity over the length of light beam.

shadowgraph image of plumes during solidification process (by Lum Chee)

Introduction-3

 Index of refraction is a function of thermodynamic state (density) for homogeneous medium:

• Lorenz-Lorentz relationship:
$$\frac{1}{\rho} \frac{n^2 - 1}{n^2 + 2} = const$$

• When
$$n \approx 1$$
, for gaseous flow:
$$\frac{n-1}{\rho} = const \implies \rho = \frac{n-1}{const}$$

- at standard condition, with n_0 and ρ_0 : $\frac{n_0 1}{\rho_0} = const \implies n 1 = \frac{\rho}{\rho_0} (n_0 1)$ $\Rightarrow \rho = \rho_0 \frac{n - 1}{n - 1}$
- When first and second derivative is determined as in Schlieren and shadowgraph apparatus:

$$\frac{\partial \rho}{\partial y} = \frac{1}{const} \frac{\partial n}{\partial y} \Rightarrow \frac{\partial \rho}{\partial y} = \frac{\rho_0}{n_0 - 1} \frac{\partial n}{\partial y}$$

$$\frac{\partial^2 \rho}{\partial y^2} = \frac{1}{const} \frac{\partial^2 n}{\partial y^2} \Rightarrow \frac{\partial^2 \rho}{\partial y^2} = \frac{\rho_0}{n_0 - 1} \frac{\partial^2 n}{\partial y^2}$$

Introduction-4

- Application of the Schlieren and shadowgraphy techniques:
 - Compressible flow with shock waves ⇒ density changes
 - Natural convective flow ⇒ density changes
 - Flame and combustion system: ⇒ density changes
- Temperature changes inside flows:
 - For low speed flow with heat transfer:
 - P = constant

$$\rho = P/RT \Rightarrow \frac{\partial \rho}{\partial y} = \frac{P}{RT^2} \frac{\partial T}{\partial y} = \frac{\rho}{T} \frac{\partial T}{\partial y}$$

$$\Rightarrow \frac{\partial n}{\partial y} = \frac{n_0 - 1}{\rho_0} \frac{\partial \rho}{\partial y} = \frac{n_0 - 1}{T} \frac{\rho}{\rho_0} \frac{\partial T}{\partial y}$$

$$\Rightarrow \frac{\partial T}{\partial y} = \frac{T}{n_0 - 1} \frac{\rho_0}{\rho} \frac{\partial n}{\partial y}$$

$$\Rightarrow \frac{\partial^2 n}{\partial y^2} = \frac{n_0 - 1}{\rho_0} \left[-\frac{\rho}{T} \frac{\partial^2 T}{\partial y^2} + \frac{2\rho}{T^2} \left(\frac{\partial T}{\partial y} \right)^2 \right]$$

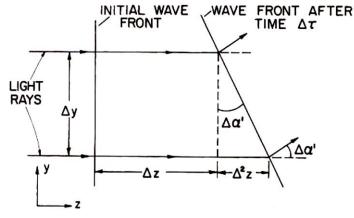
Deflection of light rays

- According to definition of index of refraction, the light velocity will be $V=C_o/n$.
- The slope of the wave front of the light: $\frac{dy}{dz}$
- If the angle $\Delta \alpha$ ' is quite small:

$$\Delta Z = \frac{C_0}{n} \Delta \tau$$

$$\Delta^2 Z = \Delta Z - \Delta Z_{y+\Delta y} = -C_0 \left(\Delta \left(\frac{1}{n}\right)/\Delta y\right) \Delta \tau \Delta y$$

$$\Delta \alpha' = \frac{\Delta^2 Z}{\Delta y} = -n \left(\Delta \left(\frac{1}{n}\right)/\Delta y\right) \Delta Z$$


$$\frac{dy}{dz} = d\alpha' = -n\left[\frac{d(\frac{1}{n})}{dy}\right]dz = n\frac{1}{n^2}\left[\frac{dn}{dy}\right]dz = \frac{1}{n}\left(\frac{dn}{dy}\right)dz = \frac{d(\ln n)}{dy}dz$$

$$\frac{d^2y}{dz^2} = \frac{d(\ln n)}{dy}$$

$$d\alpha' = -n\left[\frac{d(\frac{1}{n})}{dy}\right]dz = n\frac{1}{n^2}\left[\frac{dn}{dy}\right]dz = \frac{1}{n}\left(\frac{dn}{dy}\right)dz = \frac{d(\ln n)}{dy}dz$$

$$\Rightarrow \alpha' = \int \frac{1}{n} (\frac{dn}{dy}) dz \quad \stackrel{n \approx 1}{\Rightarrow} \quad \alpha' = \int \frac{dn}{dy} dz$$

Shadowgraph technique

$$I_{sc} = \frac{\Delta y}{\Delta y_{sc}} I_0$$

$$\Delta y_{sc} = \Delta y + Z_{sc} \cdot d\alpha$$

$$\frac{\Delta I}{I_0} = \frac{I_{sc} - I_0}{I_0} = \frac{\Delta y}{\Delta y_{sc}} - 1$$

$$= -Z_{sc} \cdot \frac{d\alpha}{\Delta y_{sc}} \approx -Z_{sc} \cdot \frac{d\alpha}{dy}$$

$$\Rightarrow \frac{\Delta I}{I_0} = \approx -Z_{sc} \cdot \frac{d\alpha}{dy}$$
since $\alpha = \frac{1}{n_a} \int \frac{dn}{dy} dz$

$$\Rightarrow \frac{\Delta I}{I_0} = \frac{-Z_{sc}}{n_a} \cdot \int \frac{d^2n}{dy^2} dz$$

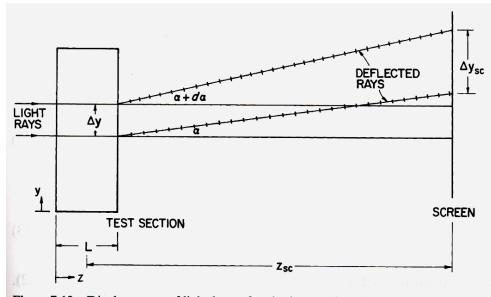


Figure 7.12 Displacement of light beam for shadowgraph evaluation

• Sensitivity is proportional to index of refraction 1/n, and screen distance Z_{sc}

Shadowgraphy

 In shadowgraphy, as light rays pass through the measurement region, the deflection of the light rays as they interact with variations in the optical index lead to an intensity distribution:

$$\frac{\Delta I}{I} = l \int_{\zeta_1}^{\zeta_2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) (\ln n) \, \mathrm{d}z$$

 For weak refraction, and applying the Gladstone-Dale formula reveals a dependence on the second partial derivatives of density.

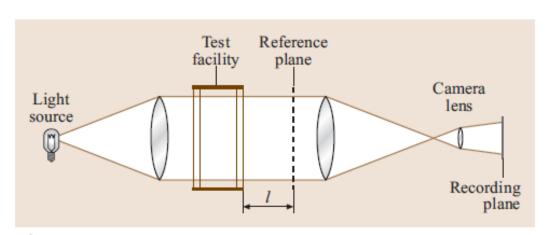
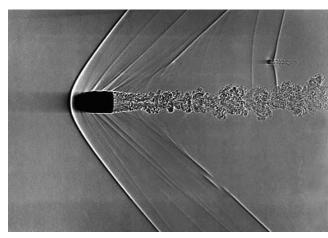
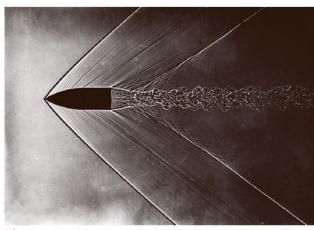
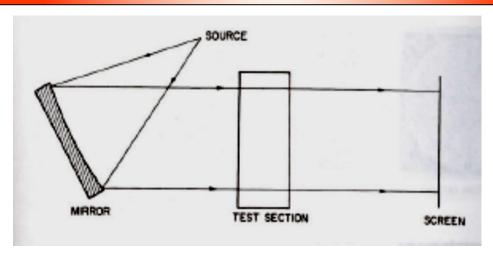
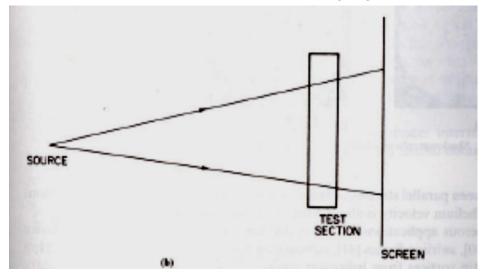



Fig. 6.2 Shadowgraph setup with parallel beams through the test object

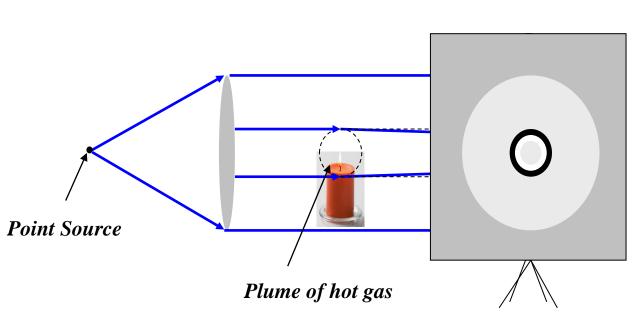
Shadowgraph of a bullet (by Andrew Davidhazy)

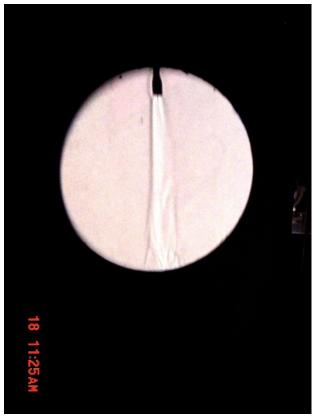




Fig. 6.3 Shadowgraph of a bullet flying at supersonic velocity (courtesy Deutsch-Französisches Forschungsinstitut, ISL, St. Louis, France)

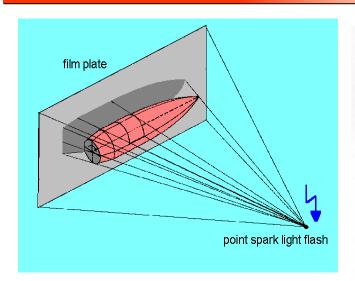
Aerospace Engineering

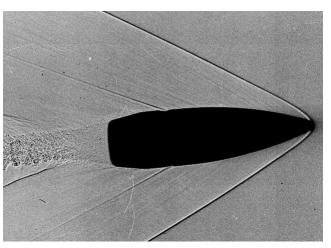
Setup of a Shadowgraph imaging system

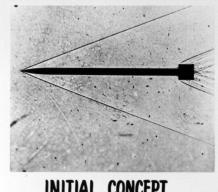

Experimental setup with one converging mirror



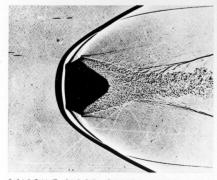
Experimental setup without lens or mirror

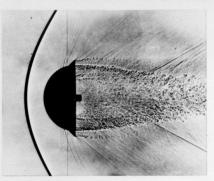

Direct Shadowgraph

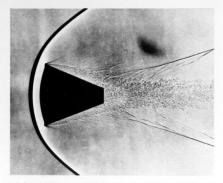




Examples: Shadowgraph images




RESEARCH CONTRIBUTING TO PROJECT MERCURY


INITIAL CONCEPT

MISSILE NOSE CONES 1953-1957

BLUNT BODY CONCEPT 1953

MANNED CAPSULE CONCEPT 1957

Shadowgraph Images of Re-entry Vehicles

SHADOWGRAPH IMAGING EXAMPLE

- Shadowgraph Imaging of Human Exhaled Airflows: An Aid to Aerosol Infection Control
- https://www.youtube.com/watch?v=gEIHX1AIIOY

Schlieren

 In Schlieren, as light rays pass through index variations in the measurement region, the deflection of the light rays cause them to be either blocked or pass a knife edge:

$$\frac{\Delta I}{I} = \frac{f_2}{a} \int_{\zeta_1}^{\zeta_2} \frac{1}{n} \frac{\partial n}{\partial y} \, \mathrm{d}z \; .$$

• For small angles of deflection, and applying the Gladstone-Dale formula reveals a dependence on the partial derivatives of density.

$$\frac{\Delta I}{I} = \frac{K f_2}{a} \int_{\zeta_1}^{\zeta_2} \frac{\partial \rho}{\partial y} \, \mathrm{d}z$$

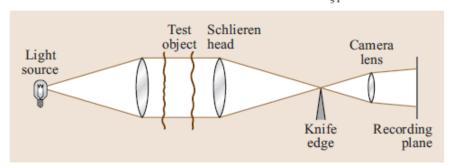
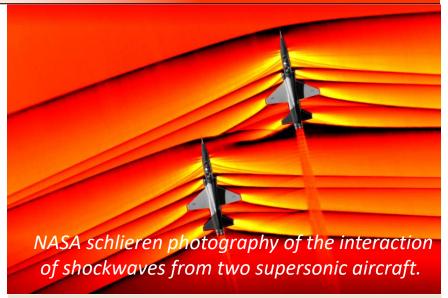
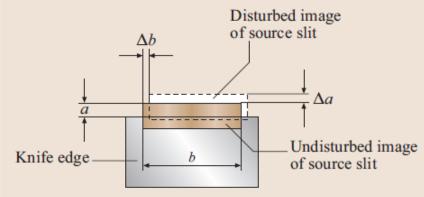




Fig. 6.5 Schlieren setup with parallel light through the test field

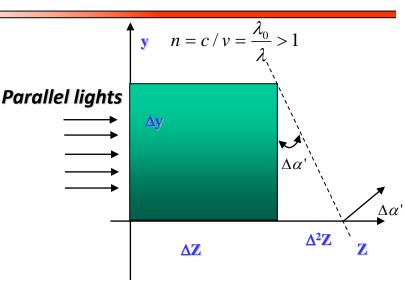
Fig. 6.6 Image of a light source of size $a \times b$ in the focal plane of the schlieren head, as seen in the direction of the optical axis; shift of the light source by Δa and Δb , respectively, caused by light deflection in the refractive index

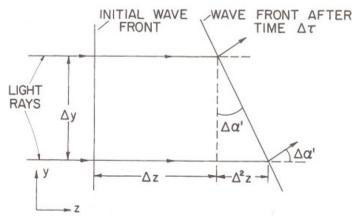
MENTALS OF SCHLIEREN TECHN

- According to definition of index of refraction, the light velocity will be V=C_/n.
- The slope of the wave front of the light: dy
- If the angle $\Delta \alpha$ 'is quite small.

 $\Rightarrow \alpha' = \int \frac{1}{n} (\frac{dn}{dy}) dz \quad \stackrel{n \approx 1}{\Rightarrow} \quad \alpha' = \int \frac{dn}{dy} dz$

• If the angle
$$\Delta \alpha$$
' is quite small.
$$\Delta Z = \frac{C_0}{n} \Delta \tau$$


$$\Delta^2 Z = \Delta Z - \Delta Z_{y+\Delta y} = -C_0 (\Delta(\frac{1}{n})/\Delta y) \Delta \tau \Delta y$$


$$\Delta \alpha' = \frac{\Delta^2 Z}{\Delta y} = -n (\Delta(\frac{1}{n})/\Delta y) \Delta Z$$

$$\frac{dy}{dz} = d\alpha' = -n [\frac{d(\frac{1}{n})}{dy}] dz = n \frac{1}{n^2} [\frac{dn}{dy}] dz = \frac{1}{n} (\frac{dn}{dy}) dz = \frac{d(\ln n)}{dy} dz$$

$$\frac{d^2 y}{dz^2} = \frac{d(\ln n)}{dy}$$

$$d\alpha' = -n [\frac{d(\frac{1}{n})}{dy}] dz = n \frac{1}{n^2} [\frac{dn}{dy}] dz = \frac{1}{n} (\frac{dn}{dy}) dz = \frac{d(\ln n)}{dy} dz$$

Schlieren concept

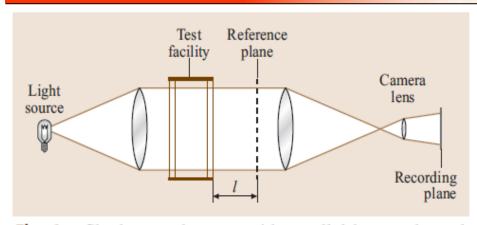
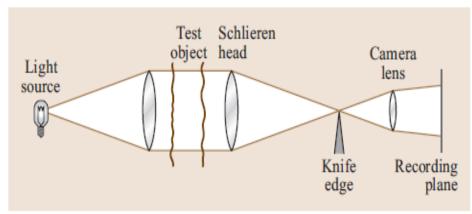
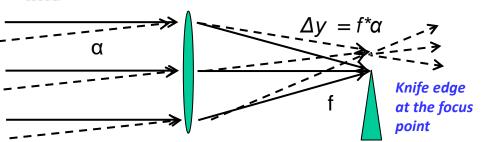




Fig. 6.2 Shadowgraph setup with parallel beams through the test object

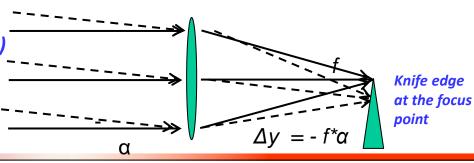
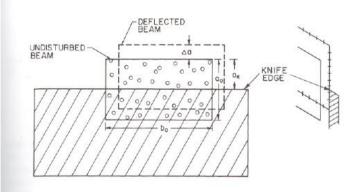


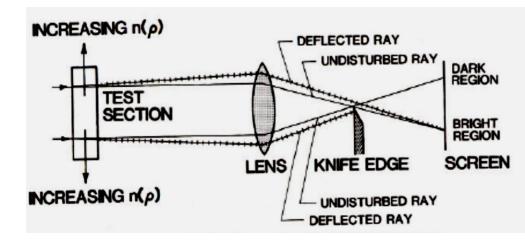
Fig. 6.5 Schlieren setup with parallel light through the test field

- Parallel rays are focused at len's focal distance
- Deflected rays are focused off-axis
- Parallel rays at angle α to optical axis are displaced $\Delta y = f^*\alpha$
- Suppose a knife edge is added
- Rays deflected away are passed (bright regions)
- Rays deflected toward are blocked (dark regions)

Schlieren technique

FUNDAMENTALS OF SCHLIEREN TECHNIQUE


The intensity after the shape razor blade (knife edge) before the experiment


$$I_k = \frac{a_K}{a_0} I_0$$

 a_0 The intensity after the deformation due to the variation of the index of refraction

$$\begin{split} I_{d} &= I_{k} + \frac{\Delta a}{a_{K}}I_{k} = (1 + \frac{\Delta a}{a_{K}})I_{k} \\ contrast &= \frac{\Delta I}{I_{k}} = \frac{I_{d} - I_{k}}{I_{k}} = \frac{\Delta a}{a_{K}} = \pm \frac{\alpha f_{2}}{a_{K}} \\ sensitivity: \quad \frac{d(contrast)}{d\alpha} &= \frac{f_{2}}{a_{K}} \end{split}$$

Sensitivity is proportional to f_2 and inversely to a_k

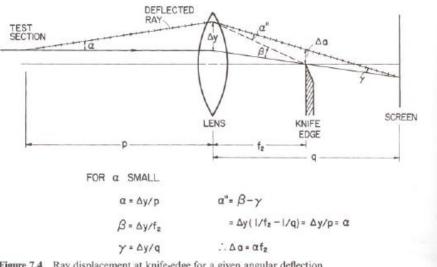
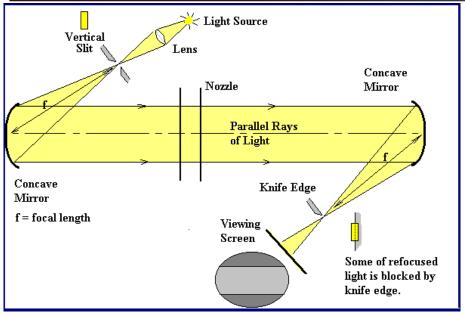
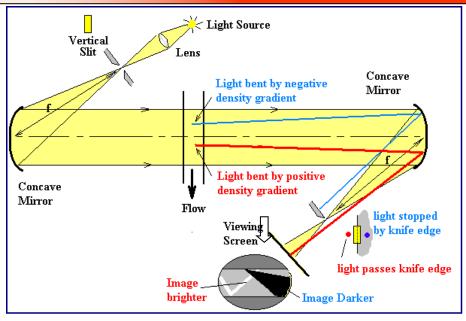
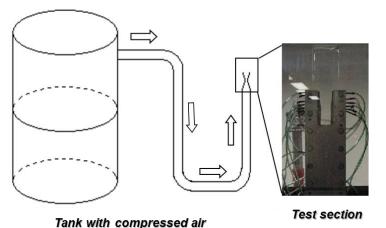
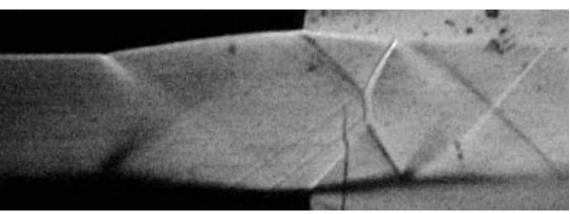




Figure 7.4 Ray displacement at knife-edge for a given angular deflection


Visualization of shock waves in a transonic/supersonic nozzle using Schlieren technique



Before turning on the Supersonic jet

After turning on the Supersonic jet

Over-expanded flow

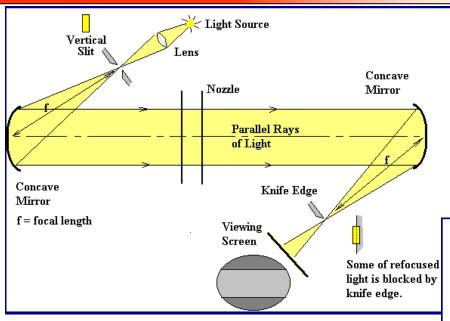
MENTALS OF SCHLIEREN TECHNIQUE

 $\alpha = \Delta y/p$

B = DV/f. Y = Dy/q

a"= B-y

.. A a = af.


 $= \Delta y (1/f_2 - 1/q) = \Delta y/p = \alpha$

For a gas flow with density change:

$$\frac{\Delta I}{I_k} = \pm \frac{\alpha f_2}{a_K}$$
 FOR a SMALL
$$\alpha \cdot \Delta y / p \qquad \alpha' \cdot \beta - \gamma$$

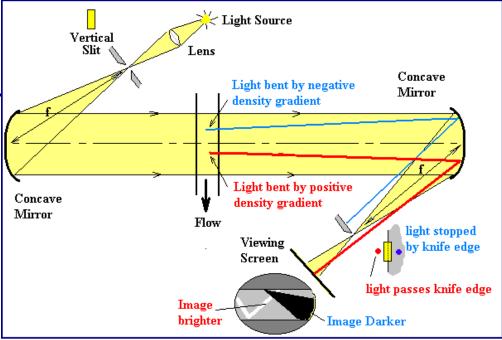
$$\beta \cdot \Delta y / t_k \qquad = \Delta y (1 / f_k - 1 / q) \cdot \Delta y \cdot \alpha' \cdot \beta - \gamma$$

$$\beta \cdot \Delta y / t_k \qquad = \Delta y \cdot (1 / f_k - 1 / q) \cdot \Delta y \cdot \alpha' \cdot \beta - \gamma$$

$$\beta \cdot \Delta y / t_k \qquad = \Delta y \cdot (1 / f_k - 1 / q) \cdot \Delta y \cdot \alpha' \cdot \beta - \gamma$$

$$\beta \cdot \Delta y / t_k \qquad = \Delta y \cdot (1 / f_k - 1 / q) \cdot \Delta y \cdot \alpha' \cdot \beta - \gamma$$
 Figure 7.4 Ray displacement at knife-edge for a given angular deflection
$$\frac{\partial \rho}{\partial y} = \frac{\rho_0}{n_0 - 1} \frac{\partial n}{\partial y} \qquad \Rightarrow \qquad \frac{\Delta I}{I_k} = \pm \frac{f_2}{a_K} \frac{n_0 - 1}{\rho_0} \int \frac{d\rho}{dy} dz$$

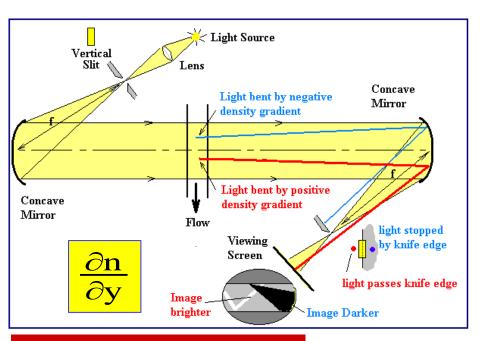
$$n \approx 1 \qquad \Rightarrow \qquad \frac{\Delta I}{I_k} = \pm \frac{f_2}{a_K} \frac{n_0 - 1}{\rho_0} \frac{d\rho}{dy} L$$


SCREEN

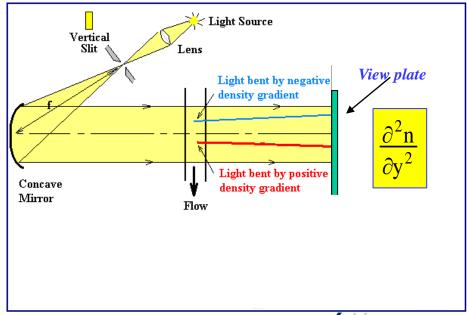
Visualization of shock wave in a transonic/supersonic nozzle using Schlieren technique

Before turning on the Supersonic jet

After turning on the Supersonic jet



Comparison of Schlieren vs. Shadowgraph

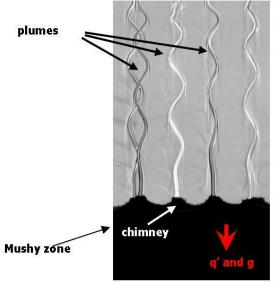

Schlieren:

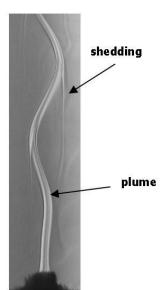
- Displays a focused image
- Shows ray refraction angle, arepsilon
- Contrast level responds to the 1st derivative of reflective index changes.
- Knife edge used for cutoff

Shadowgraph:

- Displays a mere shadow
- Shows light ray displacement
- Contrast level responds to the 2nd derivative of reflective index changes.
- No knife edge used

SCHLIEREN & SHADOWGRAPH FOR QUANTITATIVE MEASUREMENTS


- Application of the Schlieren and shadowgraph techniques:
 - Compressible flow with shock waves ⇒ density changes
 - Natural convective flow ⇒ density changes
 - Flame and combustion system: ⇒ density changes
- Temperature changes inside flows:
 - For low speed flow with heat transfer:
 - P = constant


$$\rho = P/RT \Rightarrow \frac{\partial \rho}{\partial y} = \frac{P}{RT^2} \frac{\partial T}{\partial y} = \frac{\rho}{T} \frac{\partial T}{\partial y}$$

$$\Rightarrow \frac{\partial n}{\partial y} = \frac{n_0 - 1}{\rho_0} \frac{\partial \rho}{\partial y} = \frac{n_0 - 1}{T} \frac{\rho}{\rho_0} \frac{\partial T}{\partial y}$$

$$\Rightarrow \frac{\partial T}{\partial y} = \frac{T}{n_0 - 1} \frac{\rho_0}{\rho} \frac{\partial n}{\partial y}$$

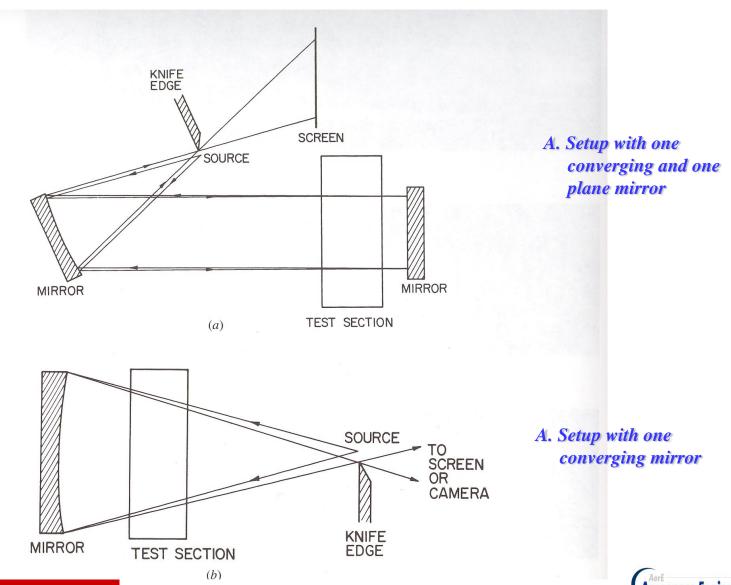
$$\Rightarrow \frac{\partial^2 n}{\partial y^2} = \frac{n_0 - 1}{\rho_0} [-\frac{\rho}{T} \frac{\partial^2 T}{\partial y^2} + \frac{2\rho}{T^2} (\frac{\partial T}{\partial y})^2]$$

SCHLIEREN & SHADOWGRAPH FOR QUANTITATIVE DENSITY MEASUREMENT

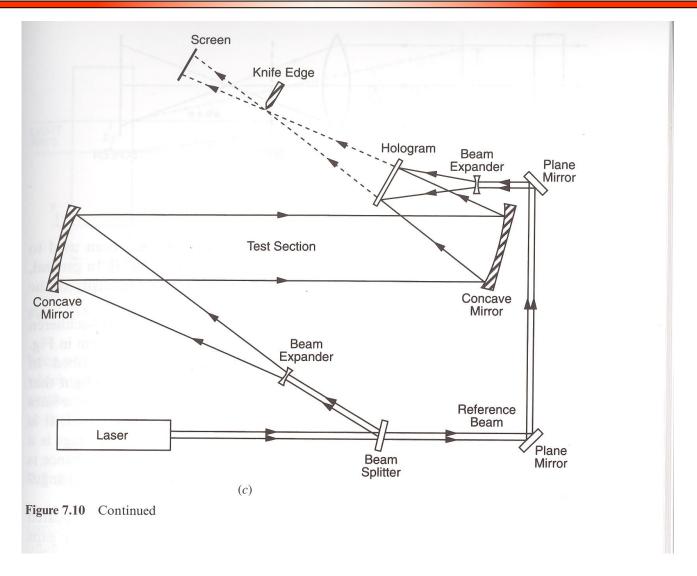
 Index of refraction is a function of thermodynamic state (density) for homogeneous medium:

• Lorenz-Lorentz relationship:
$$\frac{1}{\rho} \frac{n^2 - 1}{n^2 + 2} = const$$

• When
$$n \approx 1$$
, for gaseous flow:
$$\frac{n-1}{\rho} = const \implies \rho = \frac{n-1}{const}$$


• at standard condition, with
$$n_0$$
 and $\rho_{0,:}$ $\frac{n_0 - 1}{\rho_0} = const \Rightarrow n - 1 = \frac{\rho}{\rho_0} (n_0 - 1)$
 $\Rightarrow \rho = \rho_0 \frac{n - 1}{n_0 - 1}$

• When first and second derivative is determined as in Schlieren and shadowgraph apparatus:


$$\frac{\partial \rho}{\partial y} = \frac{1}{const} \frac{\partial n}{\partial y} \Rightarrow \frac{\partial \rho}{\partial y} = \frac{\rho_0}{n_0 - 1} \frac{\partial n}{\partial y}$$

$$\frac{\partial^2 \rho}{\partial y^2} = \frac{1}{const} \frac{\partial^2 n}{\partial y^2} \Rightarrow \frac{\partial^2 \rho}{\partial y^2} = \frac{\rho_0}{n_0 - 1} \frac{\partial^2 n}{\partial y^2}$$

Alternative Schlieren system

Holographic Schlieren system

Fundamentals of Schlieren System

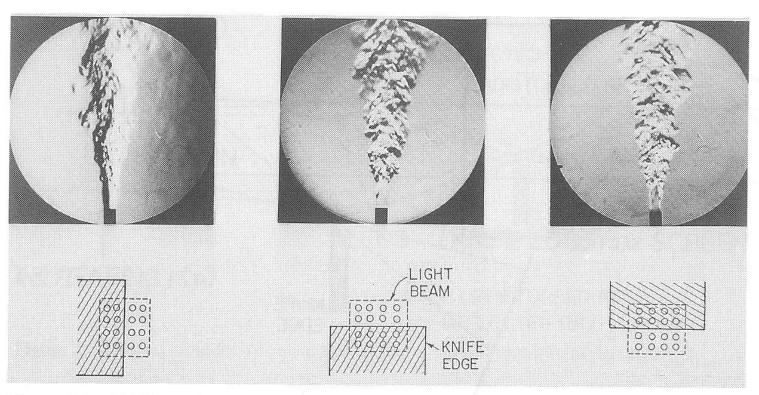


Figure 7.7 Schlieren images of a helium jet entering an atmosphere of air: The effect of knife-edge orientation (Re = 630)

Fundamentals of Schlieren System

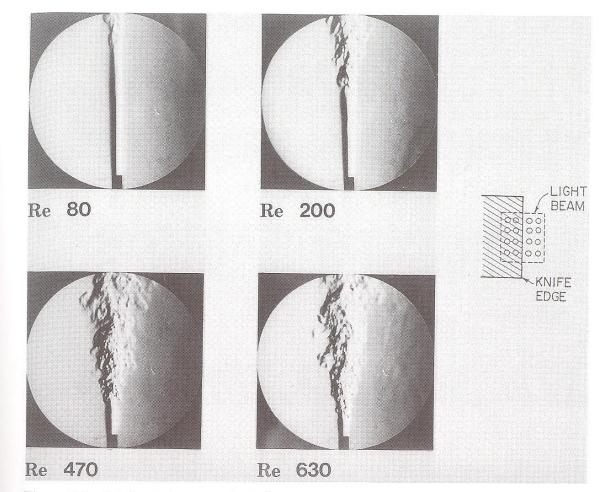
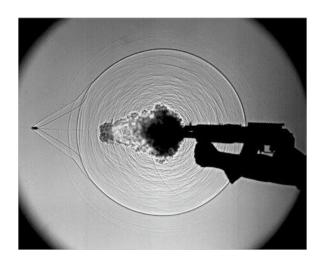


Figure 7.8 Schlieren images of the flow structure of a helium jet entering air at differ numbers

Examples: Shlieren Photography


Warm water

A cough

A gas leak

The firing of an AK-47.

A simulated explosion in an airplane cabin.

Hair dryer

Aerospace Engineering

Schlieren Application Examples

 Seeing the Invisible: SLOW MOTION Schlieren Imaging results <u>https://www.youtube.com/watch?v=4tgOyU34D44</u>

