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Abstract:

In transportation networks the robustness of a network regarding nodes and links failures is a
key factor for its design. A common way to measure the robustness of a network is to evaluate
its algebraic connectivity. In our previous work we formulated a new air transportation network
model and showed the algebraic connectivity optimization problem is important because the
two sub-problems of adding edges and choosing edge weights can not be treated separately. We
presented a method to find both the edges and the corresponding weights in order to optimize the
small scale network algebraic connectivity, which is a measure for robustness. In this paper we
propose the cluster decomposition method to solve the larger size network problem. Moreover,
the algebraic connectivity optimization for directed air transportation network is discussed.
Simulations are performed for both large scale problem and directed network problem.

Keywords: Air transportation network modeling, algebraic connectivity, large scale network,
directed network

1. INTRODUCTION

The air transportation network is made of nodes that
represent the airports and edges that represent the flight
routes which directly link two airports (Vargo et al., 2010;
Wei and Sun, 2011). In air transportation network both
node or link failures can happen due to airline budget cut,
weather hazard, economic policy, etc. Under these planned
or unpredictable node and link failures, how to build a
robust or well connected network is a practical problem
that has significant economic impact. We measure the
robustness of air transportation network by computing the
algebraic connectivity, which is usually considered as one
of the most reasonable and neat evaluation methods (Wei
and Sun, 2011; Jamakovic and Uhlig, 2007; Jamakovic and
Mieghem, 2008).

We consider an air transportation network, which has its
graph representation G with n nodes and m edges. Let
A = (a

ij

) be the adjacency matrix of G. The Laplacian
matrix L = (l

ij

) of G is defined by:⇢
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We name the eigenvalues of L: �1  �2  · · ·  �
n

. L is a
semi-definite positive matrix so for all i, �

i

� 0. We also
know that �1 = 0 since Le = 0 with e = (1, · · · , 1).
Definition �2(L) is the algebraic connectivity of G.

We now recall the three well known properties of the
algebraic connectivity that will be used in this work.

Property 1 Let e = (1, · · · , 1) 2 Rn and

⌦ = {x 2 Rn | kxk = 1, eTx = 0}
The Courant Fischer principle (Mohar, 1991) states that:

�2 = min
x2⌦

xTLx. (1)

Property 2 The algebraic connectivity is a lower bound
for both the node connectivity and the edge connectivity
of a graph (see de Abreu (2007)).

This property is the main reason why the algebraic con-
nectivity is used to measure the robustness of a graph.

Property 3 The function w ! �2(w) is concave. This can
be proven by seeing that �2(w) is the pointwise infimum
of a family of linear functions of w (see Sun et al. (2006)):
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The related work in algebraic connectivity has been stud-
ied for a long time and there are some results about it.
Concerning the optimization of the algebraic connectivity
on a graph, the problems studied in the literature can be
divided into two groups.

1.1 The edge addition problem

The goal is to add (or remove) a given number of edges on
a graph in order to get the best algebraic connectivity:

max
�E

�2(G(E0 +�E))



s.t.

⇢
|�E| = k
�E ⇢ P, P \ E0 = ;

The algorithms that have been developed to solve the
problem include tabu search (Wei and Sun, 2011), greedy
algorithms (Wei and Sun, 2011; Ghosh and Boyd, 2006),
and rounded semidefinite programming (SDP) (Ghosh and
Boyd, 2006).

1.2 The variable weights problem

The edges of the graph are fixed and the goal is to choose
the weights of the edges in order to maximize the algebraic
connectivity:

max
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where D and (d1, · · · , dm) are the given data of the
problem. This is a convex optimization problem and it is
often solved by using a semidefinite programming (SDP)
formulation (Sun et al., 2006; Goring et al., 2008; Boyd,
2006) or a sub-gradient algorithm (Boyd et al., 2004).

In Spiers et al. (2012) we showed that in order to find
the optimal solution, the two problems above can not
be separated. For small scale problems, we proposed our
algorithm to solve both problems at the same time: the
edges of the graph are free, as well as their weights.

The major contribution of this paper is to present the
cluster decomposition method for the same problem from
Spiers et al. (2012) in large scale networks. In addition,
the algebraic connectivity optimization for directed air
transportation network is also discussed. Numerical results
are shown to study the performance of our methods in
large scale scenario and directed network scenario.

The rest of this paper is structed as follows. We revisit our
problem formulation in Section 2. In Section 3 we solve
the problem for large scale networks, the computational
e�ciency is analysed and the numerical results are pro-
vided. We present the algebraic connectivity optimization
for directed air transportation network in Section 4. The
algorithm performance, solution result and failure case
examples in directed network scenario are also discussed
in Section 4. Section 5 concludes the paper.

2. PROBLEM FORMULATION

We consider a set of airports a
i

with given locations in the
plane. The goal is to connect them so that we maximize
the algebraic connectivity of the network under several
constraints.

There are m = n(n�1)
2 edges in the complete symmetric

graph. Each of them has a distance d
ij

and a weight w
ij

representing the amount of tra�c on the link. We consider
the following constraints:

• For safety reasons and because the airports have a
limit in the tra�c they can handle, the edges have a
maximum capacity �:

8(i, j) 2 E, w
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 �

• The total distance represents the cost of the fuel used
which is one of the main cost. So the total distance
travelled is limited by:

X
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• The edges also need a minimum amount of tra�c ↵:

8(i, j) 2 E, w
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� ↵ or w
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= 0

Indeed, opening a new route when there is consider-
able tra�c demand. For example there are no flights
from Paris to Indianapolis because the demand is not
large enough.

• The airports need a minimum number of passengers
which corresponds to the amount of travellers that
actually want to go to this particular airport.
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The constant p
i

can be set proportional to the popu-
lation of the city. p

i

may be ignored at first but will
be important to get realistic results at the end.

In summary, the complete problem we aim at solving is:

max
w
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2.1 The alternative formulation

In order to be able to solve the problem, we need to
reformulate it by adding decision variables. The first idea
is to add, for each edge (i, j), a binary variable x

ij

stating
if there exist or not an edge between a

i

and a
j

:

x
ij

= 1 , w
ij

6= 0

This is useful since we can now express the domain for w
as :
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The problem now becomes:
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Then, we add a variable k that is equal to the number of
edges in the graph. The final formulation of the problem
is:

max
x,w,k

�2(L(w)) st :
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These additional variables will be necessary to approach
the solution of the problem by progressively eliminating
bad assignments.

2.2 Di�culty

The problem (P) is an extension of the flight routes
addition problem (Wei and Sun, 2011) in which the weights
were fixed and the goal was to choose which edges had
to be added in order to optimize the connectivity. This



problem is proven to be NP-Hard. The extended version
we are dealing with is therefore also a di�cult problem.

An important remark is that the problem can not really
be splitted into two steps where the first one consists in
choosing if w = 0 or not and the second one in choosing
the value of the weights. This is due to the fact that their
is a minimum and a maximum constraint on w (node and
distance).

When we forget the minimum node condition we can
however try a decomposition. The first step is to choose
edges for the empty graph which corresponds to the edge
addition problem:

max
x

�2(L(x))

subject to :
X

i

x
i

= k, x
i

2 {0, 1},
X

i

x
i

d
i

 D

↵

and then to choose the weights on them :
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, y = x
opt

We saw in Spiers et al. (2012) that if we use this ap-
proximation in two steps the results can be really bad in
comparison with well adapted methods.

2.3 Relaxation

The relaxation (R) of the problem is obtained by allowing
non-integer values for x:

8 (i, j) 2 E, x
ij

2 [0, 1]

This is the same as choosing w 2 [0,�] without the vari-
ables x and k. However these variables will be necessary
in order to be able to get the integer solution from this
relaxed one. Several kinds of rounding techniques were
implemented and compared in Spiers et al. (2012) too.

3. LARGE SCALE AIR TRANSPORTATION
NETWORK

3.1 Necessity

We now want to apply the previous work to large networks.
The most time consuming operation in the process is the
resolution of the SDP. Figure 1 represents the computa-
tional time required to solve the SDP of the problem for
n nodes. We see that the time to solve it increases very
rapidly. In fact for n nodes there are n(n � 1) + 2 ⇠ n2

variables in the SDP. As we need to solve several SDPs in
order to solve the problem, it becomes almost impossible
for n � 35.

However we would like to get some results for large values
of n because real networks are usually large. For example,
the air transportation network contains several hundred
nodes even when considering only the USA.

3.2 Cluster decomposition

As the main constraint is a limit on the maximum distance
traveled, the optimal networks tend to contain short links.
Thus, the idea in this section is to divide the airports
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Fig. 1. Time (in seconds) to solve the SDP formulation of
the problem for a given number of nodes n.

into c 2 N clusters based on the distance between the
nodes. These clusters can be solved independently with
the method used in Spiers et al. (2012) and be connected
afterwards.

To connect the cluster, we choose k major nodes in each
cluster that will be connected each other. Then we simply
have to solve the problem (P ) for these c⇥k nodes, except
that links between two nodes from the same cluster are not
allowed, so the graph we are working on is not complete.

At the end, we need to solve c + 1 problems of type (P )
to get the final result. Figure 2 shows the idea of the
decomposition into several clusters and the selection of
major nodes.

Fig. 2. A set of 16 nodes separated in 3 clusters with 2
major nodes in each (in red).

There are several parameters whose values have to be
chosen to apply this idea. First we have to choose the
number of clusters and how many major nodes are used in
each cluster to connect to other clusters. We also need to
choose which nodes are kept as major nodes among each
cluster. Naturally we decide here to take the biggest nodes
which are the nodes with the largest value of p

i

.

In addition, to solve the problem for each small problem
1  i  c+1 we have to choose the value of the maximum
distance D

i

. A natural option is to choose D
i

proportional
to the sum s

i

of all the distances of the edges in the cluster
i and such that
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The separation of the nodes into several clusters is made
by k-means algorithm (Kleinberg and Tardos, 2005). This
algorithm has the advantages of being fast, easy to imple-
ment and generally gives good results.

To sum up the method described above, we write the full
cluster decomposition algorithm as:

3.3 Evaluation of the e�ciency

The goal here is to prove that if all c + 1 cluster are
well connected the resulting graph will be well connected
too. This depends on the values of some parameters that
characterize how each cluster is linked to the others.

We consider c clusters. Each cluster have n nodes and k of
its nodes are used to connect to other clusters. Let G be
the matrix of the graph and F the vector defined by the
expression below. If, for instance c = 3, the matrix G can
be put into the following form :

G =

0

BBBBBBBBBB@

E 0 0 E 0 0
A1 0 0 0 0 0 0

0 0 0 0 0 0
E 0 0 E 0 0
0 0 0 A2 0 0 0
0 0 0 0 0 0
E 0 0 E 0 0
0 0 0 0 0 0 A3

0 0 0 0 0 0

1

CCCCCCCCCCA

F =

0

BBBBBBBBBB@

↵
�
�
0
0
0
�↵
��
��

1

CCCCCCCCCCA

with the following notation :

• ↵ and � are constants that will be computed in the
next paragraph,

• A1, A2 and A3 represent the matrices of the 3 clusters,
• E is a k ⇥ k matrix with all elements equal to 1.

The Fiedler vector The Fiedler vector is the vector
solution of the minimization problem :

min
x2Rn

{xTLx | kxk = 1, xe = 0}

It is known to be an indicator on how to split a graph into
two smaller graphs. In fact the nodes that have the same
sign in this vector form a cut of the graph (see Martinez
et al. (2007)).

Here, the optimal cut will naturally be between two
clusters. Since some of the nodes play the same role, the

Fiedler vector has a shape close to F where ↵ and � are
constants that need to be determined.

This assumption has been verified on numerical tests and
therefore seems to be a very good approximation of the
real Fiedler vector.

Computing the connectivity We consider that the Fiedler
vector has the form of F and we also consider that matrices
are full: all non diagonal elements are equal to 1. We matrix
products give:

�2 = FTLF

�2 = 2k↵X + 2(n� k)�Y

with

X = ↵(n� 1 + k(c� 1))� (k � 1)↵� (n� k)� + k↵

Y = �(n� 1)� k↵� (n� k � 1)�
We also know that kFk = 1, thus :

2k↵2 + (2n� 2k)�2 = 1

↵ =

r
1� (2n� 2k)�

2k
We substitute ↵ with this expression and � is given by the
equation :

d�2

d�
= 0 (3)

With a computation software like Maple, this gives us the
expression of the function f such that:

�2 = f(n, k, c).

In practice, the matrices have a density of ⇢ instead of
being full, we simply get instead:

�2 = ⇢f(n, k, c).

Results with Maple By solving equation (3), we get the
value of ↵, � and then �2. The following figures have been
obtained with Maple. Among the three parameters k, c
and n we fix two of them and let the third one vary to see
its influence on the connectivity.

Fig. 3. k and c are fixed. �2 = f(n).

Figures 3, 4, 5 provide us a more clear idea on how to
choose the value of each parameter. For example, the
connectivity is almost linear regarding k but has a concave
shape when represented as a function of the number of
clusters c.



We are looking for a trade-o↵: if c is too large, kc will be
too large to be solved. On the contrary, if c is too small,
each of the cluster will have too many nodes to be solved.

Fig. 4. c and n are fixed. �2 = f(k).

Fig. 5. k and n are fixed. �2 = f(c).

3.4 Numerical results

The data used are the 100 largest cities in the USA.
The values of p

i

proportional to the population. Figure 6
represents the 200 biggest cities without any link.
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Fig. 6. The 200 biggest cities of the USA.

The optimal network found is represented on Figure 7.
The blue lines represent the edges inside each cluster and
the red lines represent the edges that connect nodes from
di↵erent clusters.
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Fig. 7. Result for the 100 biggest cities of the USA.

The connectivity we have reached is:

�2 = 2.6

We plot the sorted degrees of the nodes in the network
in Figure 8. The curve is closer to cubic law rather
than exponential law as in the actual air transportation
network (Guimera and Amaral, 2004).
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Fig. 8. The sorted degrees of the optimal solution and
its corresponding cubic fitting for the USA air trans-
portation network.

4. DIRECTED AIR TRANSPORTATION NETWORK

4.1 From undirected graph to directed graph

In this section, we would like to improve the results by
using directed graphs. In order to be consistent with the
undirected case, the graphs need to be balanced: the
number of aircrafts that come in is the same as the number
of aircrafts that leave the airport:

8i 2 {1, · · · , n},
nX
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w
ij

=
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k=1

w
ki

.

It is clear that the set of undirected graphs is included in
the set of directed balanced graphs. As a result, we know



we can get results at least as good as our previous work
(Spiers et al., 2012).

Definition

According to Wu (2005), if ⌦ = {x 2 Rn, xe = 0, kxk = 1}
we can extend the definition of the algebraic connectivity
for directed balanced graphs with:

min
x2⌦

xTLx = �2

✓
1

2
(L+ LT )

◆
.

Property

In the directed case and with this definition of the alge-
braic connectivity, the upper bound given by the continu-
ous relaxation is the same as in the undirected case.

Proof. Given the optimum directed balanced graph in the
relaxed problem and G its incidence matrix, we can create

H =
G+GT

2
,

where H is symmetric and satisfies all the constraints
of the problem since they are linear. In addition with
the definition of the connectivity for directed graphs the
connectivity of H is clearly the same as the connectivity
of G.

Since we also know that undirected graphs is a subset of
directed balanced graphs, the bound are equals in both
cases. This will allow us to evaluate easily the improvement
brought by directed graphs.

4.2 Results

We use the same method as in Spiers et al. (2012). The
results are impressively better with directed graphs as
we can see on Figure 9. The best value for the directed
balanced case almost reach the upper bound. We also
notice that the optimal result has less edges than the
optimal network in the undirected case (an edge in the
undirected case is counted in both ways).
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Fig. 9. �2 = f(k) for the same graph with di↵erent
approaches. y-axis is the value of �2 and x-axis is the
number k of edges to be added.

We can see on Figure 10 that most of the edges in the
optimal solution are oriented in only one way which shows
that the solution is very di↵erent from the undirected case.
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Fig. 10. Optimal directed Graph.

There is however an important drawback. Indeed, we now
need two times as many variables. Thus the problem takes
a much longer time to be solved and is only applicable on
smaller networks for now.

4.3 Failure case

If an edge or a node is removed, the graph is not balanced
anymore. This can cause important problems in reality, so
we need to change the remaining weights in the graph to
face this problem.

This operation can be done by using a flow algorithm. The
first step is to link the nodes with positive aircraft balance
to a virtual source and those with negative balance to a
sink. The capacities of these links are equal to the absolute
value of the di↵erence in the balance flow for the node. The
capacity of the other links of the graph is �.

Then we consider the problem of the maximization of
the flow from the source to the sink. This problem can
be solved by using Edmond Karp algorithm (Cormen
et al., 2009) which has a e�cient compexity: O(nm2). This
algorithm maintains the balance of the flow at each node.

(a) (b)

Fig. 11. (a) Example of a graph with a node failure; (b)
Example of a graph after maximization of the flow.

At the end the graph we are looking for is the graph
solution of the flow problem when we remove the source
and the sink. Figures 11a and 11b show an example of a
graph in which a node has been removed, before and after



maximization of the flow. The graph in Figure 11b is now
balanced when we remove the source (green node) and the
sink (blue node).

5. CONCLUSION

In this work we revisit our problem formulation concerning
the optimization of the connectivity of a network. This
problem consists in finding both the edges of the graph
and their weights under physical distance constraint. With
the exact solution developed for small scale network, we
propose the new cluster decomposition method to solve
the large scale network problem and successfully find a
reasonable solution for the 100 largest cities in the USA.
Finally, we extend our study on directed graphs and
emphasize the fact that the algorithm’s performance is
improved in directed network scenario.

The problem studied is able to model real problems such as
transportation networks robustness. It may therefore have
practical applications and can lead to improvements with
current way of designing networks. Many improvements
of this work can be considered, in particular for the
large scale problem in which the great complexity of the
problem let us think that other methods might be able to
outperform our results.
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