Publications

Journal

2024

    2023

    1. Zeng, Z., & Sharma, A. (2023). Aerodynamic-whistles-based ultrasonic tone generators for bat deterrence. Physics of Fluids, 35(9). https://doi.org/10.1063/5.0160564
    2. Sudharsan, S., Narsipur, S., & Sharma, A. (2023). Evaluating Dynamic Stall-Onset Criteria for Mixed and Trailing-Edge Stall. AIAA Journal, 61(3), 1181–1196. https://doi.org/10.2514/1.J062011

    2022

    1. Sudharsan, S., Ganapathysubramanian, B., & Sharma, A. (2022). A vorticity-based criterion to characterise leading edge dynamic stall onset. Journal of Fluid Mechanics, 935, A10. https://doi.org/10.1017/jfm.2021.1149
    2. Yin, J., Ganesh Rajagopalan, R., & Sharma, A. (2022). Unstructured, Pressure-Based Algorithm Using Implicit Runge–Kutta for Moving Boundary Problems. AIAA Journal, 60(10), 5750–5767. https://doi.org/10.2514/1.J061929

    2021

      2020

      1. Wu, X., & Sharma, A. (2020). Artefacts of finite span in vortex-induced vibration simulations. Applied Ocean Research, 101, 102265. https://doi.org/10.1016/j.apor.2020.102265
      2. Sadoughi, M., Hu, C., Moghadassian, B., Sharma, A., Beck, J., & Mathiesen, D. (2020). Sequential online dispatch in design of experiments for single-and multiple-response surrogate modeling. IEEE Transactions on Automation Science and Engineering, 17(4), 1674–1688. https://doi.org/10.1109/TASE.2020.2969884
      3. Wu, X., Jafari, M., Sarkar, P., & Sharma, A. (2020). Verification of DES for flow over rigidly and elastically-mounted circular cylinders in normal and yawed flow. Journal of Fluids and Structures, 94, 102895. https://doi.org/10.1016/j.jfluidstructs.2020.102895
      4. Moghadassian, B., & Sharma, A. (2020). Designing wind turbine rotor blades to enhance energy capture in turbine arrays. Renewable Energy, 148, 651–664. https://doi.org/10.1016/j.renene.2019.10.153

      2019

      1. Sharma, A., & Visbal, M. (2019). Numerical investigation of the effect of airfoil thickness on onset of dynamic stall. Journal of Fluid Mechanics, 870, 870–900. https://doi.org/10.1017/jfm.2019.235
      2. Bodling, A., & Sharma, A. (2019). Numerical investigation of noise reduction mechanisms in a bio-inspired airfoil. Journal of Sound and Vibration, 453, 314–327. https://doi.org/10.1016/j.jsv.2019.02.004

      2018

      1. Bodling, A., & Sharma, A. (2018). Numerical investigation of low-noise airfoils inspired by the down coat of owls. Bioinspiration & Biomimetics, 14(1), 016013. https://doi.org/10.1088/1748-3190/aaf19c
      2. Thelen, A., Leifsson, L., Sharma, A., & Koziel, S. (2018). Variable-fidelity shape optimization of dual-rotor wind turbines. Engineering Computations, 35(7), 2514–2542. https://doi.org/10.1108/EC-12-2017-0502
      3. Moghadassian, B., & Sharma, A. (2018). Inverse design of single-and multi-rotor horizontal axis wind turbine blades using computational fluid dynamics. Journal of Solar Energy Engineering, 140(2), 021003. https://doi.org/10.1115/1.4038811
      4. Thelen, A., Leifsson, L., Sharma, A., & Koziel, S. (2018). RANS-based design optimization of dual-rotor wind turbines. Engineering Computations, 35(1), 35–52. https://doi.org/10.1108/EC-10-2016-0354

      2017

        2016

        1. Agrawal, B. R., & Sharma, A. (2016). Numerical analysis of aerodynamic noise mitigation via leading edge serrations for a rod–airfoil configuration. International Journal of Aeroacoustics, 15(8), 734–756. https://doi.org/10.1177/1475472X16672322
        2. Wang, Z., Tian, W., Ozbay, A., Sharma, A., & Hu, H. (2016). An experimental study on the aeromechanics and wake characteristics of a novel twin-rotor wind turbine in a turbulent boundary layer flow. Experiments in Fluids, 57, 1–17. https://doi.org/10.1007/s00348-016-2233-6
        3. Rosenberg, A., & Sharma, A. (2016). A prescribed-wake vortex lattice method for preliminary design of co-axial, dual-rotor wind turbines. Journal of Solar Energy Engineering, 138(6), 061002. https://doi.org/10.1115/1.4034350
        4. Moghadassian, B., Rosenberg, A., & Sharma, A. (2016). Numerical investigation of aerodynamic performance and loads of a novel dual rotor wind turbine. Energies, 9(7), 571. https://doi.org/10.3390/en9070571
        5. Chen, L., Harding, C., Sharma, A., & MacDonald, E. (2016). Modeling noise and lease soft costs improves wind farm design and cost-of-energy predictions. Renewable Energy, 97, 849–859. https://doi.org/10.1016/j.renene.2016.05.045

        2015

        1. Ju, H., Mani, R., Vysohlid, M., & Sharma, A. (2015). Investigation of Fan Wake-OGV Interaction Broadband Noise. AIAA Journal, 53(12). https://doi.org/10.2514/1.J053167

        2014

        1. Han, F., Sharma, A., Paliath, U., & Shieh, C. (2014). Multiple pure tone noise prediction. Journal of Sound and Vibration, 333(25), 6942–6959. https://doi.org/10.1016/j.jsv.2014.08.006
        2. Takle, E. S., Rajewski, D. A., Lundquist, J. K., Gallus Jr, W. A., & Sharma, A. (2014). Measurements in support of wind farm simulations and power forecasts: The Crop/Wind-energy Experiments (CWEX). Journal of Physics: Conference Series, 524(1), 012174. https://doi.org/10.1088/1742-6596/524/1/012174
        3. Rosenberg, A., Selvaraj, S., & Sharma, A. (2014). A Novel Dual-Rotor Turbine for Increased Wind Energy Capture. Journal of Physics: Conference Series, 524(1), 012078. https://doi.org/10.1088/1742-6596/524/1/012078

        2013

        1. Sharma, A., & Chen, H. (2013). Prediction of aerodynamic tonal noise from open rotors. Journal of Sound and Vibration, 332(16), 3832–3845. https://doi.org/10.1016/j.jsv.2013.02.027

        Before ISU (<2012)

        1. Sharma, A., Chen, H., & Shieh, C. M. (2010). Linearized Navier-Stokes Analysis for Rotor-Stator Interaction Tone Noise Prediction. 16th AIAA Aeroacoustics Conference, AIAA 2010-3744. https://doi.org/10.2514/6.2010-3744
        2. Sharma, A., Richards, S. K., Wood, T. H., & Shieh, C. M. (2009). Numerical prediction of exhaust fan-tone noise from high-bypass aircraft engines. AIAA Journal, 47(12), 2866–2879. https://doi.org/abs/10.2514/1.42208
        3. Sezer-Uzol, N., Sharma, A., & Long, L. N. (2005). Computational fluid dynamics simulations of ship airwake. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 219(5), 369–392. https://doi.org/10.1243/095441005X30306
        4. Sharma, A. (2005). Book Review on C++ and Object-Oriented Numeric Computing for Scientists and Engineers. Journal of Aerospace Computing, Information, and Communication, 2(5), 236–237. https://doi.org//abs/10.2514/1.16108?journalCode=jacic
        5. Sharma, A., & Long, L. N. (2004). Numerical simulation of the blast impact problem using the Direct Simulation Monte Carlo (DSMC) method. Journal of Computational Physics, 200(1), 211–237. https://doi.org/10.1016/j.jcp.2004.03.015
        6. Souliez, F., Long, L. N., Morris, P. J., & Sharma, A. (2002). Landing gear aerodynamic noise prediction using unstructured grids. International Journal of Aeroacoustics, 1(2), 115–135. https://doi.org/10.1260/147547202760236932
        7. Sharma, A., & Ananthkrishnan, N. (2001). Passage through resonance of rolling finned projectiles with center-of-mass offset. Journal of Sound and Vibration, 239(1), 1–17. https://doi.org/10.1006/jsvi.2000.3114
        8. Sharma, A., & Ananthkrishnan, N. (2000). Large-amplitude limit cycles via a homoclinic bifurcation mechanism. Journal of Sound and Vibration, 236(4), 725–729. https://doi.org/10.1006/jsvi.2000.2956

        Conference proceedings

        2024

          2023

          1. Sudharsan, S., Narsipur, S., & Sharma, A. (2023). Effects of Compressibility on Leading-Edge Dynamic Stall Criteria. AIAA Aviation Forum. https://doi.org/10.2514/6.2023-3371
          2. Barman, A., & Sharma, A. (2023). A Space-Time framework for compressible flow simulations using Finite Volume Method. AIAA Aviation Forum. https://doi.org/10.2514/6.2023-3431

          2022

          1. Yin, J., Ganesh Rajagopalan, R., & Sharma, A. (2022). An Unstructured, Pressure-Based Algorithm using Implicit Runge-Kutta for Moving Boundary Problems. AIAA SciTech Forum. https://doi.org/10.2514/6.2022-1051
          2. Zeng, Z., & Sharma, A. (2022). Blade-mounted, passive ultrasonic bat deterrents for wind turbines. 28th AIAA/CEAS Aeroacoustics 2022 Conference, 3101. https://doi.org/10.2514/6.2022-3101
          3. Sudharsan, S., Narsipur, S., & Sharma, A. (2022). Evaluating dynamic stall onset criteria for mixed and trailing-edge stall. AIAA Scitech Forum. https://doi.org/10.2514/6.2022-1983
          4. Li, A., Zeng, Z., & Sharma, A. (2022). Aeroacoustic analysis of an air amplifier. AIAA Scitech Forum, 2561. https://doi.org/https://doi.org/10.2514/6.2022-2561
          5. Yin, J., Rajagopalan, G., & Sharma, A. (2022). An Unstructured, Pressure-Based Algorithm using Implicit Runge-Kutta for Moving Boundary Problems. AIAA Scitech Forum. https://doi.org/10.2514/6.2022-1051

          2021

          1. Li, A., & Sharma, A. (2021). A panel method generated boundary condition for simulating unsteady flow over maneuvering airfoils. AIAA Aviation Forum. https://doi.org/10.2514/6.2021-2524
          2. Wu, X., & Sharma, A. (2021). umerical Investigation of Vortex-Induced Vibration at Re=8M. AIAA Aviation Forum. https://doi.org/10.2514/6.2021-2474
          3. Zeng, Z., & Sharma, A. (2021). Experimental and numerical aeroacoustic analysis of an ultrasound whistle. AIAA Aviation Forum. https://doi.org/10.2514/6.2021-2215
          4. Sudharsan, S., & Sharma, A. (2021). Exploring Various Techniques to Characterize Leading-Edge Dynamic Stall Onset. AIAA Aviation Forum. https://doi.org/10.2514/6.2021-2520

          2020

            2019

            1. Selvaraj, S., & Sharma, A. (2019). Effect of Leading Edge Serrations on Dynamic Stall at Re=30,000. AIAA Scitech Forum. https://doi.org/10.2514/6.2019-2158

            2018

            1. Bodling, A., & Sharma, A. (2018). Numerical Investigation of Low-Noise Airfoils Inspired by the Down Coat of Owls. 2018 AIAA/CEAS Aeroacoustics Conference. https://doi.org/10.2514/6.2018-3925
            2. Bodling, A. L., & Sharma, A. (2018). Implementation of the Ffowcs Williams-Hawkings equation: predicting the far field noise from airfoils while using boundary layer tripping mechanisms. Fluids Engineering Division Summer Meeting, V001T08A006. https://doi.org/10.1115/FEDSM2018-83385

            2017

            1. Bodling, A., & Sharma, A. (2017). Noise reduction mechanisms due to bio-inspired airfoil designs. 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. https://doi.org/10.2514/6.2017-0458
            2. Sharma, A., & Visbal, M. R. (2017). Airfoil thickness effects on dynamic stall onset. 23rd AIAA Computational Fluid Dynamics Conference. https://doi.org/10.2514/6.2017-3957
            3. Wu, X., Sharma, A., Jafari, M., & Sarkar, P. (2017). Towards Predicting Dry Cable Galloping using Detached Eddy Simulations. 2017 AIAA Science and Technology Forum and Exposition. https://doi.org/10.2514/6.2017-1483
            4. Moghadassian, B., & Sharma, A. (2017). Inverse Design of Single- and Multi-Rotor Horizontal Axis Wind Turbine Blades using Computational Fluid Dynamics. AIAA Science and Technology Forum and Exposition. https://doi.org/10.2514/6.2017-1848
            5. Bodling, A., Agrawal, B. R., Sharma, A., Clark, I., Alexander, W. N., & Devenport, W. J. (2017). Numerical investigations of bio-inspired blade designs to reduce broadband noise in aircraft engines and wind turbines. 55th AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2017-0458
            6. Bodling, A., Agrawal, B. R., Sharma, A., Clark, I., Alexander, W. N., & Devenport, W. (2017). Numerical Investigations of Bio-Inspired Blade Designs to Reduce Broadband Noise in Aircraft Engines and Wind Turbines. 55th AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2017-0458
            7. Rosenberg, A., & Sharma, A. (2017). Inverse Design of a Dual-Rotor Wind Turbine using a Prescribed Wake Vortex Lattice Method. 2017 AIAA Science and Technology Forum and Exposition. https://doi.org/10.2514/6.2017-1847

            2016

            1. Thelen, A. S., Leifsson, L. T., Sharma, A., & Koziel, S. (2016). RANS-based Shape Optimization of Dual-Rotor Wind Turbines using Variable-fidelity Models. 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 3514. https://doi.org/10.2514/6.2016-3514
            2. Agrawal, B. R., & Sharma, A. (2016). Numerical investigations of bio-inspired blade designs to reduce broadband noise in aircraft engines and wind turbines. 54th AIAA Aerospace Sciences Meeting. https://doi.org/https://doi.org/0.2514/6.2016-0760
            3. Thelen, A. S., Leifsson, L. T., Sharma, A., & Koziel, S. (2016). Direct and surrogate-based optimization of dual-rotor wind turbines. 34th Wind Energy Symposium. https://doi.org/10.2514/6.2016-1265

            2015

            1. Rosenberg, A., & Sharma, A. (2015). A Prescribed-Wake Vortex Lattice Method for Aerodynamic Analysis of Co-axial, Dual-Rotor Wind Turbines. North American Wind Energy Academy Symposium.
            2. Moghadassian, B., Rosenberg, A., Hu, H., & Sharma, A. (2015). Numerical Investigation of Aerodynamic Performance and Loads of a Novel Dual Rotor Wind Turbine. AIAA Science and Technology Forum and Exposition (SciTech2015). https://doi.org/10.2514/6.2015-1665
            3. Hu, H., Wang, Z., Ozbay, A., Tian, W., & Sharma, A. (2015). An Experimental Investigation on the Wake Characteristics behind a Novel Twin-Rotor Wind Turbine. AIAA Science and Technology Forum and Exposition (SciTech2015). https://doi.org/10.2514/6.2015-1663

            2014

            1. Agrawal, B., & Sharma, A. (2014). Aerodynamic Noise Prediction for a Rod-Airfoil Configuration using Large Eddy Simulations. 20th AIAA/CEAS Aeroacoustics Conference. https://doi.org/10.2514/6.2014-3295
            2. Wang, Z., Ozbay, A., Tian, W., Sharma, A., & Hu, H. (2014). An Experimental Investigation on the Wake Characteristics behind Dual-Rotor Wind Turbines. Bulletin of the American Physical Society, 59.
            3. Selvaraj, S., & Sharma, A. (2014). On Predicting the Phenomenon of Surface Flow Convergence in Wind Farms. ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. https://doi.org/10.1115/GT2014-25307
            4. Agrawal, B. R., Rosenberg, A., & Sharma, A. (2014). Towards Identifying Contribution of Wake Turbulence to Inflow Noise from Wind Turbines. 2nd Symposium on OpenFOAM in Wind Energy.

            2013

            1. Ju, H., Mani, R., Vysohlid, M., & Sharma, A. (2013). Investigation of Fan Wake-OGV Interaction Broadband Noise. AIAA Aeroacoustics Meeting. https://doi.org/10.2514/6.2013-215
            2. Sharma, A. (2013). Large Eddy Simulations for Predicting Aerodynamic Noise due to Rod Wake-Airfoil Interaction. RUZGEM, Middle Eastern Technical University.
            3. Selvaraj, S., Chaves, A., Takle, E., & Sharma, A. (2013). Numerical Prediction of Surface Flow Convergence Phenomenon in Windfarms. RUZGEM, Middle Eastern Technical University.

            Before ISU (<2012)

            1. Sharma, A., & Chen, H. (2012). Prediction of Tonal Aerodynamic Noise from Open Rotors. 18th AIAA/CEAS Aeroacoustics Conference, AIAA-2012. https://doi.org/10.2514/6.2012-2265
            2. Paliath, U., Han, F., Shieh, C. M., & Sharma, A. (2010). Multiple Pure Tone Noise Prediction for Acoustically Treated Aircraft Engines. 16th AIAA Aeroacoustics Conference, AIAA 2010-3714. https://doi.org/10.2514/6.2010-371
            3. Sharma, A., Richards, S. K., Wood, T. H., & Shieh, C. M. (2007). Numerical prediction of exhaust fan-tone noise from high-bypass aircraft engines. 13th AIAA/CEAS Aeroacoustics Conference, AIAA 2007-3700. https://doi.org/10.2514/6.2007-3700
            4. Han, F., Shieh, C. M., Sharma, A., & Paliath, U. (2007). Multiple pure tone noise prediction and comparison with static engine test measurements. 13th AIAA/CEAS Aeroacoustics Conference, AIAA 2007-3523. https://doi.org/10.2514/6.2007-352
            5. Benwood, J., Settles, G., Long, L. N., Sharma, A., & Gatto, J. (2003). Schlieren Cinematography of Shock-Wave Reverberation in Interior Spaces. APS Division of Fluid Dynamics Meeting Abstracts. http://adsabs.harvard.edu/abs/2003APS..DFD.EQ001B
            6. Sharma, A., & Long, L. N. (2003). A Parallel, Object-Oriented Direct Simulation Monte Carlo Method for Blast-Impact Simulations. 16th AIAA Computational Fluid Dynamics Conference, AIAA 2003-4234. https://doi.org/10.2514/6.2003-4234
            7. Long, L., Sharma, A., & Souliez, F. (2003). Client-Server Java Programming for Wireless Mobile Robots. 41st Aerospace Sciences Meeting and Exhibit, AIAA 2003-0459. https://doi.org/10.2514/6.2003-459
            8. Sharma, A., Long, L. N., & Krauthammer, T. (2002). Using the Direct Simulation Monte Carlo approach for the blast-Impact problem. The 17th International Symposium on Military Aspects of Blast Simulations.
            9. Souliez, F., LN, L., Morris, P. J., & Sharma, A. (2002). Landing Gear Aerodynamic Noise Prediction Using Unstructured Grids. 40th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2002-0799. https://doi.org/10.2514/6.2002-799
            10. Sharma, A., & Long, L. N. (2001). Airwake simulations on an LPD 17 ship. 15th AIAA Computational Fluid Dynamics Conference, AIAA 2001-2589, 2589. https://doi.org/10.2514/6.2001-2589
            11. Long, L. N., Souliez, F., & Sharma, A. (2001). Aerodynamic noise prediction using parallel methods on unstructured grids. 7th AIAA/CEAS Aeroacoustics Conference, AIAA 2001-2196. https://doi.org/10.2514/6.2001-2196